Keynote Speakers

Qingqing Wu

Qingqing Wu
Associate Professor
Shanghai Jiao Tong University

Speech Title:Intelligent Reflecting Surface Empowered 6G Wireless Networks
Abstract: Deepfakes are artificially created media posing as actual video recordings and are a potential source of fake news or disinformation. Although research has been done in developing algorithms for the automatic detection of deepfakes, there needs to be more work conducted on how users identify deep fakes. This is a critical missing link because algorithms are currently not performing at a level where human judgement is unneeded. This presentation will discuss the verification strategies users adopt when engaging with content from deepfakes and the implications on businesses and societies.In this talk, we introduce a new wireless research paradigm by employing a massive number of low-cost passive reflecting elements with controllable phase, named intelligent reflecting surface (IRS), which is able to smartly change the wireless signal propagation to enable various functions such as beamforming and interference nulling/cancelation. We illustrate the main applications of IRS in achieving spectrum and energy efficient as well as secure and sustainable wireless networks in the future, and its advantages as compared to existing technologies such as massive MIMO and active relaying. We then present the signal and channel model of IRS by taking into account its hardware limitation in practice. Next, we focus on discussing the main design challenges in IRS-aided wireless networks, including joint active and passive beamforming optimization, channel estimation, etc., and highlight important directions for sensing, powering and computing.
Biography: Qingqing Wu is an Associate Professor with Shanghai Jiao Tong University. His current research interest includes intelligent reflecting surface (IRS), unmanned aerial vehicle (UAV) communications, and MIMO transceiver design. He has coauthored more than 100 IEEE journal papers with 30+ ESI highly cited papers and 9 ESI hot papers, which have received more than 26,000 Google citations. He was listed as the Clarivate ESI Highly Cited Researcher in 2022 and 2021, the Most Influential Scholar Award in AI-2000 by Aminer in 2021 and World’s Top 2% Scientist by Stanford University in 2020 and 2021. He was the recipient of the IEEE Communications Society Fred Ellersick Prize, IEEE Best Tutorial Paper Award in 2023, Asia-Pacific Best Young Researcher Award and Outstanding Paper Award in 2022, Young Author Best Paper Award in 2021, the Outstanding Ph.D. Thesis Award of China Institute of Communications in 2017, the IEEE ICCC Best Paper Award in 2021, and IEEE WCSP Best Paper Award in 2015. He was the Exemplary Editor of IEEE Communications Letters in 2019 and the Exemplary Reviewer of several IEEE journals. He serves as an Associate Editor for IEEE Transactions on Communications, IEEE Communications Letters, IEEE Wireless Communications Letters. He is the Lead Guest Editor for IEEE Journal on Selected Areas in Communications. He is the workshop co-chair for IEEE ICC 2019-2023 and IEEE GLOBECOM 2020. He serves as the Workshops and Symposia Officer of Reconfigurable Intelligent Surfaces Emerging Technology Initiative and Research Blog Officer of Aerial Communications Emerging Technology Initiative. He is the IEEE Communications Society Young Professional Chair in Asia Pacific Region.

Mohammad Reza Ghavidel Aghdam

Mohammad Reza Ghavidel Aghdam
Özyeğin University

Speech Title:Toward Enhanced Wireless Communications: Leveraging Reconfigurable Intelligent Surfaces (RIS) and End-to-End Machine Learning
Abstract: In the rapidly evolving landscape of wireless communication networks, the emergence of Reconfigurable Intelligent Surfaces (RIS) stands as a game-changer. These surfaces, empowered by intelligent algorithms, offer unprecedented control over electromagnetic wave propagation, promising to revolutionize communication efficiency and coverage. RIS introduces a paradigm shift in the way we conceive and implement wireless communication systems. By strategically deploying passive reflecting elements, RIS optimizes signal transmission, mitigates interference, and enhances overall network performance. However, to fully unlock the capabilities of RIS, seamless integration with machine learning is imperative.
End-to-end (E2E) machine learning algorithms provide a holistic approach to optimizing the performance of RIS-enabled communication networks. These algorithms leverage vast amounts of data to autonomously adapt RIS configurations, channel allocation, and beamforming strategies, thereby achieving optimal performance under dynamic and complex operating environments. Through E2E machine learning, RIS networks can continuously learn from real-world interactions, evolving to meet evolving communication demands.
In this presentation, we will explore the key challenges and opportunities in deploying RIS with E2E machine learning. We will discuss the intricacies of training machine learning models to effectively harness the capabilities of RIS, ensuring seamless integration with existing network infrastructures. Moreover, we will highlight promising applications of RIS-E2E machine learning in various domains, including 5G/6G networks, IoT connectivity, and smart city initiatives. Join us as we embark on a journey to unlock the full potential of RIS through E2E machine learning. Discover how this convergence of technologies is poised to redefine the future of wireless communication networks, ushering in an era of unprecedented connectivity, efficiency, and innovation.
Biography: Dr. Mohammad Reza Ghavidel Aghdam is a distinguished scholar and researcher specializing in Telecommunication Engineering and Wireless Communications. He earned his Bachelor of Science degree in Electrical Engineering from Urmia University in 2014, followed by a Master of Science in Communication Engineering and a Doctorate in Telecommunication Engineering from the University of Tabriz, Iran, in 2016 and 2020, respectively. Beginning his academic journey as an Adjunct Assistant Professor at the Department of Electrical Engineering, Faculty of Engineering, Ilkhichi Branch, Islamic Azad University, Iran, in 2017, Dr. Ghavidel Aghdam swiftly established himself as a dedicated educator and researcher. His commitment to excellence and passion for advancing the field led him to Özyeğin University in Istanbul, Turkey, where he joined as a postdoctoral research fellow at the esteemed Communication Theory and Technologies (CT&T) Research Group in October 2022. Dr. Ghavidel Aghdam's research interests span a wide array of cutting-edge topics in wireless communications, including but not limited to signal processing techniques, intelligent reflecting surfaces (IRSs) or reconfigurable intelligent surfaces (RISs), machine learning applications, massive multiple-input and multiple-output (mMIMO), millimeter wave (mmWave) communications, and non-orthogonal multiple access (NOMA). His contributions in these areas have significantly advanced the understanding and implementation of wireless communication systems, paving the way for enhanced performance, efficiency, and scalability in modern telecommunications networks.