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ABSTRACT
Anomaly detection in hyperspectral images has drawn much atten-
tion in recent years. In order to provide a high-quality background
dictionary for low-rank representation-based anomaly detector,
from the perspective of dictionary learning, an anomaly detection
method based on low-rank representation with an online-learned
double sparse dictionary is proposed. Firstly, the double sparsity
structure is adopted to the dictionary learning model to enhance the
adaptivity. Next, to improve the dictionary training efficiency, the
double sparse dictionary structure is modified and a corresponding
online dictionary learning algorithm is proposed. The experimen-
tal results on five real-world hyperspectral datasets show that our
method can achieve a reliable anomaly detection result and the
background suppression performance is satisfying.
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1 INTRODUCTION
Hyperspectral images (HSIs) usually contain hundreds or even
thousands of narrow spectral bands that are barely about wide [1].
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Abundant spatial and spectral information with high resolution in
hyperspectral images make it possible to recognize different ground
objects precisely. Such process is referred as target detection and it
can be categorized into two types in terms of the availability of prior
information: supervised and unsupervised. Since it is difficult to
obtain the spectral information for targets of interest, unsupervised
target detection is more frequently studied in practical which is
known as anomaly detection.

In hyperspectral images, anomalies occupy only a few pixels
and have evidently different spectral characteristics from the back-
ground. In order to effectively extract anomalies, plenty of methods
have been proposed. The Reed-Xiaoli anomaly detector [2] is the
benchmark anomaly detection method in this type. It measures the
Mahalanobis distance between the test pixels and the estimated
background which is under the assumption of multivariate nor-
mal distribution. Since the results of RX are easily interfered by
anomalies in the background and the calculation of the covari-
ance matrix is time-cost, various modified RX based methods have
been proposed to overcome these drawbacks. The regularized RX
method [3] aims to solve the ill conditioning problem of the ma-
trix inversion by imposing a regularization for the background
covariance matrix. The weighted RX method [4] tries to attenu-
ate the anomaly contamination by re-weighting the background
with the Gaussian probability. The subspace-based RX uses the
significant eigen vectors of the covariance matrix to estimate the
background so that the anomaly interference can be eliminated.
Kwon et al. [5] projected the RX detector into a higher space so
that the anomalies can be more effectively separated from the back-
ground. Kernel adaptive subspace detector [6] employs the RBF
kernel to represent the data so that the translation invariance. John-
son et al. [7] proposed an independent-component-analysis -based
anomaly detection method. They use the adaptive Wiener filter
to suppress the background while retaining the anomalies. Chi-
ang et al. [8] located the anomalies by projection pursuit to search
anomaly pixels with evolution algorithm. Huck et al. [9] proposed
a constant-false -alarm-rate detection method via combining pro-
jection pursuit and binary test hypothesis. Sparse-representation
(SR) based anomaly detection methods have been hot topics re-
cently. Li et al. [10] aimed to improve the performance of SR based
anomaly detector by adaptively estimating local regions so that
the potential anomaly contamination can be eliminated. Zhu et
al. [11]established a global background dictionary with extracted
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background-related endmembers in the hyperspectral images. In
[12], the discriminative power of the dictionary is enhanced with an
atom re-weighting strategy which estimates the usage frequency
of an atom as its weight. Low-rank-representation (LRR) based
methods also play important roles in HSI anomaly detection. The
work in [13] introduced sparsity constraint for LRR model so that
a more robust detection performance can be achieved. Yang et al.
[14] provided a dictionary with pure background information for
LRR model. As an intrinsic property of HSI, Tan et al. [15] analyzed
the similarity among pixels in the local regions and used it as a
spatial constraint for LRR based anomaly detector.

In this paper, in order to obtain a more efficient detection result,
we propose a novel HSI anomaly detection based on low-rank repre-
sentation model with an online-learned double sparse background
dictionary. The main contributions of this paper can be summarized
as follows.

1. An online dictionary learning algorithm specially designed
for double sparse background dictionary is proposed so that
a discriminative background dictionary can be formed with
less training samples.

2. Based on the background dictionary, an LRR based detection
method is proposed.

The remainder of this paper is organized as follows. In Section 2,
the proposed method is demonstrated. In Section 3, experiments are
conducted and the results are analyzed. In Section 4, the conclusions
are drawn.

2 THE PROPOSED METHOD
2.1 Low-Rank Representation Model
In order to cope with the drawbacks of principal component analy-
sis, John Wright et al. [16] proposed robust principal component
analysis (RPCA): for a given high-dimensional dataset X, it can be
separated as a linear combination of a low-rank matrix L and a
sparse matrix S, and the aim of RPCA is to reconstruct the original
dataset with L and S. The corresponding model can be expressed
as follows,

min
L,S

rank(L) + λ | |S| |0 s.t. X = L + S (1)

where λ is a balancing parameter, | | · | |0 is the l0-norm that counts the
non-zero entries in the matrix. Solving the above optimal problem is
NP-hard and it is often relaxed into the following convex problem:

min
L,S

| |L| |∗ + λ | |S| |1 s.t. X = L + S (2)

where | | · | |∗ is the nuclear norm of the matrix which is the sum of all
singular values, and | | · | |1 represents the l1-norm that is calculated
by summing the absolute values of entries in the matrix.

In an HSI, since the bands are highly correlated and the back-
ground is generally homogeneous, the background can be regarded
to have low-rank property. Furthermore, the background usually
consists of several materials and the corresponding spectral vectors
are linear combinations of endmembers. Therefore, the background
data can be assumed drawn from multiple data subspace. This as-
sumption corresponds with LRRmodel [17], which can be expressed
as

min
L,S

| |Z| |∗ + λ | |S| |2,1 s.t. X = DZ + S (3)

where | | · | |2,1 denotes the sum of l2-norm of all columns, D is the
background dictionary and the atoms span the whole background
data space. The sparse matrix S contains anomaly signals in its
column space. To obtain the sparse matrix S, Augmented Lagrange
Method is often utilized. Accordingly, the problem in (3) can be
solved by optimizing the following Lagrange cost function:

L = | |J| |∗ + λ | |S| |2,1 + tr (YT1 (X − DZ − S)) + tr (YT2 (Z − J))
+
µ
2 (| |X − DZ − S| |2F + | |Z − J| |2F )

(4)

where Y1 and Y2 is the Lagrange multipliers, µ > 0 is the penalty
parameter. Firstly, J is obtained by fixing the other variables:

J = argmin | |J| |∗ + tr (YT2 (Z − J))
+
µ
2 (| |X − DZ − S| |2F + | |Z − J| |2F )

(5)

the analytic solution of J can be obtained by

J = Θ1/µ (Z + Y2/µ) (6)

whereΘ1/µ denotes the singular value thresholding operator which
can be expressed as

Θ1/µ [R] = U(diaд({σj − 1/µ}+))V∗ (7)

Next, Z can be obtained by

Z = (I + DT D)−1(DT (X − S) + J + (DT Y1 − Y2)/µ) (8)

Then S can be derived by optimizing the following problem

S = arg min λ | |S| |2,1 + tr (YT1 (X − DZ − S))
+
µ
2 (| |X − DZ − S| |2F + | |Z − J| |2F )

(9)

It can be solved by using the l1/2 minimization operator ad-
dressed as

S = Ω1/µ (X − DZ + Y1/µ) (10)

S(:, i) =

{
| |Q(:,i) | |2−1/µ

| |Q(:,i) | |2 Q(:, i), | |Q(:, i)| |2 > 1/µ
0 others

(11)

2.2 Online-Learned Double Sparse Background
Dictionary

The effectiveness of separation between anomalies and backgrounds
for LRR model significantly depends on the background dictionary.
Generally, randomly selecting samples from the HSI and dictionary
learning are two main method to construct the background dictio-
nary. In this paper, we construct the background dictionary with
dictionary learning. Furthermore, traditional dictionary learning
requires extensive computational resource and can be time-cost,
so that an efficient dictionary learning algorithm is demanded. In
order to address this issue, the double sparsity model is applied to
the background dictionary and a corresponding online dictionary
learning algorithm is proposed in this section.

Traditional dictionary learning process can be addressed as fol-
lows.

min
D,X

1
2
| |Y − DX| |2F s.t. | |xi | |0 ≤ p, i = 1, 2, ..., l (12)

where X is the coefficient matrix, Y is the training sample set. We
then apply the double sparsity model in the dictionary learning
process which can be transformed as follows:

min
A,X

1
2
∥Y − ΦAX∥2F , s.t.

{
∥ai ∥0 ≤ s, i = 1, 2, ...,mxj0 ≤ p, j = 1, 2, ..., l (13)
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Figure 1: Spectrum Curves, Pseudo Images and Ground Truth Maps of Two San Diego Airport HSI Datasets: (a) San Diego
Airport 1 Dataset; (b) San Diego Airport 2 Dataset.

where Φ is the base dictionary and A is the sparse dictionary. In
the dictionary update process, the base dictionary is fixed while
the sparse matrix is updated. We use the Kronecker product of
two Discrete Cosine Transform (DCT) matrices as the base matrix,
expressed as follows

Φ = ΦS ⊗ ΦS (14)

where ΦS is the DCT matrix. Inspired by the works in [18] and [19],
in order to save computational resource and time, we employ the
online dictionary learning algorithm and modify it to fit the double
sparsity model. Then, the sparse dictionary A can be updated by
the following equation:

At+1 = Hk
[
At + ηt∇f (At )

]
(15)

where At is the estimation of A in t th iteration, Hk is the hard-
thresholding operator and ∇f (At ) is the current gradient at the t
th iteration. η is the step factor and can be calculated as follows:

ηt =

∇f (At
S )

FΦ∇f (At

S )X
t
S


F

(16)

where S is the current support set. Aiming to provide a more effi-
cient structure for online dictionary learning, we modify the double
sparse dictionary learning cost function into the following form:

∥Y − ΦAX∥2F =
ΦT (Y − ΦAX)

2
F
=

ΦT Y − AX
2
F

(17)

let ΦT Y = C, the dictionary learning process can be expressed as:

min
A,X

1
2
∥C − AX∥2F s.t.

{
∥ai ∥0 ≤ s, i = 1, 2, ...,mxj0 ≤ p, j = 1, 2, ..., l (18)

Correspondingly, the gradient at current iteration and the step
factor can be re-written as follows.

∇f (At ) = AtXt (Xt )T − C(Xt )T

ηt =

∇f (At
S )

F∇f (At

S )X
t
S


F

(19)

The sparse coding phase is functioned with the orthogonal
matching pursuit (OMP) algorithm. After the sparse dictionaryA is
obtained, the background dictionary can be calculated by D = ΦA,
and it can be used in LRR model to extract the sparse matrix.

3 EXPERIMENTS AND ANALYSIS
In this section, we evaluate the effectiveness by conducting ex-
periments on five real-world HSI datasets. The experiments are
conducted on a laptop with a CPU Intel I5-7400hq, 16 GB RAM and
an operating system of Windows 10.

3.1 Data Description
The first two real-world HSI dataset are from the San Diego Airport
HSI dataset captured by Airborne Visible /Infrared Imaging Spec-
trometer (AVIRIS). The raw data is consist of 224 bands and ranging
from 0.37 ∼ 2.50 µm. In this experiment, two subregions with the
size of 100× 100 from the whole scene are selected. After removing
the low SNR and water-absorption bands, there are 189 bands left.
The background mainly contains roof, soil and parking apron. The
anomaly targets in two datasets are aircrafts in the parking apron.
The spectrum curves, the pseudo images and the ground truth maps
of two AVIRIS San Diego Airport datasets are depicted in (1).

The third to fifth datasets are selected from the Air-Beach-Urban
(ABU) HSI dataset. The HSIs in this dataset were mainly captured by
AVIRIS and Reflective Optics System Imaging Spectrometer. Three
datasets have the same size of 100 × 100. The third dataset is from
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Figure 2: Spectrum Curves, Pseudo Images and Ground Truth Maps of Three Abu Hsi Datasets: (a) ABU-Airport Dataset; (b)
ABU-Urban Dataset; (c) ABU-Beach Dataset.

Table 1: The Parameters Settings

Methods Parameters

GKRX Number of centroids: 600, kernel width: 40
LRASR K = 12,P = 10,λ = 0.01,β = 0.1
LSMAD r = 4,k = 0.004,r = 3
LSUNR winin = 5,winout = 9,λ = 0.1
SSEAD λ1 = 0.1,λ2 = 0.01
Ours λ = 0.1,µ = 10−6,µmax = 106,ρ = 1.1,ε = 10−5

the ABU Airport dataset and contains 205 bands. The anomaly
targets in this scene are several aircrafts in the parking apron, and
the background mainly includes soil, parking apron and roof. The
fourth dataset is from the ABU Urban dataset and contains 204
bands. The anomaly targets in this HSI are airplanes lying on the
ground, and the background mainly contains soil, asphalt road and
roof. The fifth dataset is from the ABU beach dataset and contains
102 bands. The anomaly targets in this scenario are several vehicles,
and the background mainly includes sea, sand and asphalt road.
The spectrum curves, the pseudo images and the ground maps of
three datasets are shown in (2).

3.2 Evaluation Criteria and Parameters
Settings

We use RX [1], Global KRX [4], LRASR [20], LSMAD [21], LSUNR
[22], and SSEAD [23] as comparison methods, and we name our
method as Ours. The parameter settings of our method and com-
parison methods are listed in Table 1. In the experiments we draw
1/5 samples from the test dataset to form the training sample set.

The quantitative evaluation criteria we use in the experiments
are receiver operator curve (ROC) and background-anomaly sep-
arability maps. The detection probability and the false alarm rate

are respectively defined as follows.

Pd =
Ncd
Nt

(20)

Fa =
Nf d

N
(21)

where Ncd is the number of correctly detected anomaly pixels, Nt is
the number of true anomaly pixels, Nfd denotes the false detected
pixels and N denotes the total number of pixels in the test image.

3.3 Results and Analysis
The experimental results on five real-world HSI datasets are shown
in (3). The first column shows the ground truth maps as refer-
ences. The detection results of two San Diego Airport, ABU-Airport,
ABU-Urban and ABU-Beach are depicted in the first to the fifth
row, respectively. It can be seen from the first row that the de-
tection performance of our method significantly outperforms the
others. Compared to RX and LRASR, our method can identify the
anomalies more prominently. From the results of SSEAD, GKRX
and LSMAD, it can be observed that the roof on the top right of
the scene severely interferers the detection performances of these
methods. The results depicted in the second row illustrates that
our method can effectively recognize the anomalies and suppress
the background. The results of RX, GKRX, LRASR and LSMAD are
all interfered by false alarms. It can be also observed from third
row to fifth row that our method can significantly separate the
anomalies from the background on three ABU datasets. For the
comparison methods, LSRUNR and SSEAD can achieve comparable
detection performances while our method has evidently stronger
background suppression ability. The results of RX show that it can
identify anomalies in ABU-Airport and ABU-Urban while it suffers
from heavy false alarms. As for the results of GKRX, LRASR and LS-
MAD, they can detect most of the anomalies in three ABU datasets,
yet there exist large amounts of pixels that have high response
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Figure 3: Ground Truths and Color Detection Maps.

Figure 4: ROC of the Detection Results: (a) Results on San Diego Airport 1. (b) Results on San Diego Airport 2. (c) Results on
ABU-Airport. (d) Results on ABU-Urban. (e) Results on ABU-Beach.

level. Compared with these methods, our method has more reliable
detection results.

The ROC of all methods on five HSI datasets are shown in (4).
As can be seen from Figure 4(a), the detection probability of our
method reaches to around 0.9 with a false alarm rate of 10-4 while
the detection probabilities of the other methods are still zero. When
the false alarm rate is 10-3, the other methods barely identify anom-
alies while the detection probability of our method achieves 1. The

superiority of our method illustrated above is also validated in Fig-
ure 4(b) and Figure 4(c). In Figure 4(d) and Figure 4(e), the areas
under curve of our method are both the largest, which indicates
that our method achieves the most reliable results.

To further quantitatively validate the effectiveness of ourmethod,
the separability maps of results on five HSI datasets are drawn in
(5). The red box and the green box represent the output distribution
range of anomalies and background, respectively. It can be observed
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Figure 5: Separability Maps of the Detection Results: (a) Results on San Diego Airport 1. (b) Results on San Diego Airport 2. (c)
Results on ABU-Airport. (d) Results on ABU-Urban. (e) Results on ABU-Beach.

from each boxplot that the gap between two boxes of our method
is the largest. This suggests that our method achieves the most
effective background-anomalies separability for all five datasets.
For GKRX, LRASR and LSMAD, overlaps between red box and
green box exists in their output results which indicates that their
detection results suffer from serious false alarms. Moreover, in these
five boxplots, it can be observed that the background distribution
boxes are all relatively the narrowest ones. This illustrates that our
method has a more satisfied background suppression ability.

3.4 Parameters Analysis
In this subsection, we conduct experiments on two real-world HSI
datasets to testify the parameters effects on detection results: ABU-
Airport and ABU-Beach. The evaluation index we use is the area
under curve (AUC). The parameterswe discuss in this subsection are
the balancing parameter λ, the proportion of samples for dictionary
learning, the sparsity s of sparse dictionary A and the sparsity p of
the coefficient matrix X.
a) The parameter λ

The experimental results for the effect of parameter λ on two
HSI datasets are depicted in (6). It can be observed that when λ falls
in the range of [0.001. 0.01], the detection performances improve
a little asλ increases. The AUC values dramatically fall with the

Figure 6: Parameter Effect of λ.

increasing of λ when λ is larger than 0.01. Consequently, λ better
falls in the range of [0.001, 0.01].
b) The proportion of samples for dictionary learning

To validate the superiority of the proposed online double sparse
dictionary learning algorithm, we design two comparison methods:
1). Remove the double sparsity structure and train the background
dictionary with K-SVD algorithm. This method is named Compare
A. 2). Remove the double sparsity structure and use the online
dictionary learning algorithm proposed in [17]. This method is
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Figure 7: Parameter Effect of s and p: (a) Results on ABU-Airport. (b) Results on ABU-Beach.

Table 2: Number of Training Samples on ABU-Airport

Proportion AUC
Compare A Compare B Ours

1/10 0.774 0.783 0.846
1/9 0.816 0.785 0.850
1/8 0.842 0.838 0.875
1/7 0.857 0.888 0.898
1/6 0.876 0.903 0.914
1/5 0.891 0.915 0.930
1/4 0.913 0.918 0.935
1/3 0.916 0.922 0.946

Table 3: Number of Training Samples on ABU-Urban

Proportion AUC
Compare A Compare B Ours

1/10 0.778 0.775 0.845
1/9 0.807 0.796 0.867
1/8 0.816 0.813 0.883
1/7 0.837 0.838 0.905
1/6 0.853 0.844 0.921
1/5 0.867 0.866 0.938
1/4 0.875 0.874 0.941
1/3 0.879 0.881 0.943

named Compare B. The experimental results on ABU-Airport and
ABU-Urban are listed in Table 2 and Table 3, respectively. From the
results in Table 2, for the detection performance that our method
achieves with 1/10 of the samples from the original dataset, Com-
pare A and Compare B require about 1/8 of the original samples.
The detection results that Compare A uses 1/3 of the samples for
training only requires 1/7 of the samples for our method. It can be
seen from the results in Table 3 that for the AUC value of around
0.84, the proportion parameter for our method is 1/8 while it is
1.3 for Compare A and Compare B. Additionally, it can also be ob-
served from two tables that when the number of training samples
is over 1/5 of the original data samples, the improvement of the

performances evidently pace down, which indicates that when we
randomly draw about 1/5 of the samples from the original dataset,
it could cover most of the background information.
c) The sparsity of the sparse dictionaryA and the coefficient matrix
X

The experimental results for the effects of the sparsity s of A
and the sparsity p of X are depicted in (7). As we can see that when
p is fixed, the AUC values gradually decreases when s increases.
This means that when the sparsity of the coefficient matrix is fixed,
the increasement of the sparsity in sparse dictionary leads an at-
tenuation to the detection performance. When s is fixed and as p
increases, the detection performances gradually deteriorate. To be
noticed, when s is within (4,12) and p is within (4,12), the AUC
values vary in a small range. Therefore, s and p are best set in the
range of (4,12).

4 CONCLUSIONS
In this paper, a novel anomaly detection method based on low-rank
representation with an online-learned double sparse dictionary is
proposed. Firstly, the double sparsity structure is applied to the
dictionary learning model to improve the discriminative power
for low-rank representation-based anomaly detector. Then, in or-
der to improve the efficiency for dictionary learning, the double
sparse background dictionary learning model is modified and a cor-
responding online dictionary learning algorithm is proposed. The
experimental results show that our method can accurately identify
the anomalies and effectively suppress the background simultane-
ously, and the proposed online double sparse dictionary learning
algorithm is proved requiring less training samples compared to
traditional dictionary learning algorithms.
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