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ABSTRACT
In this study, an efficient vision-based industry defect inspection
system using attention mechanism driven YOLOv3 on FPGA accel-
eration is proposed. First, an attention mechanism is employed to
improve YOLOv3 for the target defect inspection application. Image
preprocessing named CZS (Cut, Zoom, and Splice) operation is used
to reconstruct product images for selectively concentrating on the
pre-defined detection regions. Then we optimize the backbone net-
work of YOLOv3 according to defect size in images. Second, we use
the PYNQ-Z2 FPGA board to deploy the proposed defect inspection
system. The optimized YOLOv3 is deployed on the programmable
logic through Xilinx DNNDK, which is a low-latency, low-cost, and
low-power consumption hardware platform for industrial defect
inspection. Experimental results showed that the achieved defect
inspection accuracy was 99.2% with a processing speed of 1.54 FPS.
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1 INTRODUCTION
Vision-based product defect inspection is essential to ensure the
quality of parts and the whole manufacturing process. In recent
years, with the emergence of deep learning-based high-accuracy
image recognition technology, conventional manual operations
in vision-based defect inspection process can be replaced by au-
tomation to achieve better quality control and low cost. There are
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two types of deep learning techniques that can be used for vision-
based defect inspection, the classification-based models and the
regression-based models [1]. The classification based models are
represented by R-CNN series. Generally, R-CNN (Region-based
Convolutional Neural Network) needs two-stage processing for
region extraction and object classification, which requires a larger
amount of operations, so that the detection speed is lower. Redmon
et al. [2] proposed a regression-based end-to-end object detection,
namely YOLO (You Only Look Once). YOLOv3 is one of the most
widely used YOLO models. Based on the YOLOv3 model, Jing et
al. [3], Du et al. [4] etc. have proposed surface defect inspection
methods for fabric, PCB board, pavement, etc.

Vision-based product defect inspection differs from the other
object detection problems in two special aspects, which provide
us with optimization opportunities for such applications. First, the
recognition region on an image is predictable. As the example of a
normal welding image and a defect welding image shown in Figure
1, the image capture angle of a specific product is relatively fixed, so
the actual focus of the image to be processed is limited in a prede-
fined region (e.g. the red box in the figure). Second, the system will
be widely deployed at the production site. The processing accuracy,
speed performance, power consumption, stability, and scalability
must be considered. The target application requirements for this
work are as follows. The defect inspection accuracy and image pro-
cessing speed should not be less than 96% and 1 FPS, respectively.
And the power consumption of single equipment should not exceed
100W.

In this work, an efficient defect inspection system using FPGA
accelerated YOLOv3 is proposed to meet the above requirements.
The main contributions are as follows.

We propose an attention mechanism to optimize YOLOv3 for
defect inspection applications. A CZS image preprocessing method
and YOLOv3 backbone network tailoring method are proposed
according to the defect target character.

We use the TUL PYNQ-Z2 FPGA board to deploy the proposed
defect inspection system. The optimized YOLOv3 is deployed on
the programmable logic through Xilinx DNNDK, while the host
program for CZS and database operations is running on the pro-
cessing system, which is a low-latency, low-cost, and low-power
consumption hardware platform for industrial defect inspection.

The rest of this paper is organized as follows. The YOLOv3 with
the proposed attentionmechanism for defect inspection is explained
in section 2. In section 3, we describe FPGA implementation of the
proposed system. Experimental results are shown in section 4. The
last gives conclusions.
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Figure 1: Normal Welding and Defect Welding.

Figure 2: Proposed Image Preprocessing for Attention En-
hancement.

2 YOLOV3 WITH ATTENTION MECHANISM
2.1 CZS Operation
Attention mechanism allows modeling of dependencies without
regard to their distance in the input or output sequences [5]. For
defect inspection, the image capture angle of a specific product
is relatively fixed. Therefore, we can pay attention to the prede-
fined region for inspection, and extraction features only from such
regions. Attention mechanism focuses on the key information of
input and ignores irrelevant information, whis is achieved by image
preprocessing. Image preprocessing is as shown in Figure 2. The
whole process consists of three steps, cut, zoom and splice. We
name these operations CZS operation. The blue boxes represent
the cutting regions, green boxes and red boxes represent two kinds
of defect markup regions, respectively. Region numbers 1 to 8 of
the left original image corresponding to the splice regions of the
right image.

The cut operation takes the smallest square containing the defect
markup region as the clipping region. Assuming that the width
and height of the original image are ws and hs respectively, the

proportions of the width, height, x-coordinate and y-coordinate of
the center point of the defect markup region to the whole image
arewmr , hmr , xmr and ymr respectively. Then the values of width,
height, x-coordinate and y-coordinate of the center point of the
defect markup region arewm = ws ×wmr , hm = hs × hmr , xm =
ws × xmr and ym = hs ×ymr ; The width, height, x-coordinate and
y-coordinate of the upper left corner of the clipping region arewc ,
hc , xc and yc respectively.

wc = hc =max(wm ,hm ) × α (1)

xc = (xm +
wc
2

≤ ws )?xm −
wc
2

: ws −wc (2)

yc = (ym +
hc
2

≤ hs )?ym −
hc
2

: hs − hc (3)

The α represents an expansion coefficient that taking a value be-
tween 1 and 2, meaning that the area of the clipping region is 1
to 2 times of the defect markup region. In order to ensure that the
clipping region can contain the defect markup region, the clipping
region should be slightly larger than the defect markup region. The
ternary operator (Logical expression) ?True operation: False operation
in formulas (2) and (3) means that when the defect markup region
is close to the boundary of the picture, the upper left corner of the
clipping region should be extended correspondingly.

The zoom operation is to scale all the clipping regions on an
image to the same size, so that can be fully accommodated by the
new 416 × 416 image defined asW = 416 and H = 416, which is a
YOLOv3 standard. If the number of defect markup regions on an
image is known to be Nl , the number of clipping regions that can
be accommodated in a row or column of a new image is calculated
according to formula (4). The target size that the clipping region
should be scaled is calculated according to formula (5). The scaling
factor β is calculated according to formula (6).

Nrow = Ncol = ceil(sqrt(Nl )) (4)

wz = hz = f loor (
W

Nrow
) (5)
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β =
wz
wc

(6)

The splice operation is to combine several clipping regions after the
scaling operation into a picture. It mainly involves two algorithms,
one is mapping clipping regions to splice regions; the other is
mapping markup regions to splice regions. For algorithm 1, we first
arrange the clipping regions from small to large according to the
xc value. If the xc values of the two clipping regions are the same,
then we arrange them from small to large according to yc value.
Assuming that a clipping region is sorted as No , the width, height,
x-coordinate and y-coordinate of the upper left corner of the region
in the new picture are taken aswd , hd , xd and yd . // represents the
integer operation and % represents the remainder operation.

nrow = (No%Ncol , 0)?No//Ncol + 1 : No//Ncol (7)

ncol = (No%Ncol , 0)?No%Ncol : Ncol (8)
wd = hd = wz (9)

xd = (ncol − 1) ×wz (10)
yd = (nrow − 1) × hz (11)

For algorithm 2, the size ratio of the width, height, x-coordinate
and y-coordinate of the center point of the defect markup region
to the new picture iswnr , hnr , xnr and ynr .

wnr =
wm × β

W
(12)

hnr =
hm × β

H
(13)

xnr =
(ncol − 1) ×wz + (xm − xc ) × β

W
(14)

ynr =
(nrow − 1) × hz + (ym − yc ) × β

H
(15)

The new image generated may have some blank regions, which are
filled with 0 to complete the image preprocessing.

2.2 YOLOv3 Backbone Network Tailoring
In response to CZS operation, the backbone network of YOLOv3
can also be optimized to detect the defect regions more targeted.

The YOLOv3 backbone network includes 53 layers, called
Darknet-53. The final feature map of YOLOv3 has three sizes, 13 ×
13 has better support for big object recognition, while 52 × 52 have
better support for small object recognition and 26 × 26 for medium
size recognition.

As for the case vision-based defect inspection, the backbone
network can be tailored according to the scale of the defect markup
region. Taking the defect inspection of automobile rubber and plas-
tic parts as an example, the small-scale network can be simplified
due to the moderate size and obvious characteristics of rubber and
plastic parts in the inspection photos. Taking PCB solder joint miss-
ing detection as another example, the large-scale network can be
simplified for that the solder joint layout is fine. To sum up, the
specific judgment formula is as follows.

tailor (yolo52×52), i f (each
i ∈N

(wi >
W

26
∩ hi >

H

26
)) (16)

tailor (yolo13×13), i f (each
i ∈N

(wi <
W

26
∩ hi <

H

26
)) (17)

The tailor function is used to simplify the network yolo52 × 52. rep-
resents the small-scale detection network, yolo13 × 13 represents

the large-scale detection network, each function is used to take each
detection markup region, and N represents the total number of de-
tection markup regions on an image. wi and hi represent the width
and height of the i-th detection markup region respectively, and W
and H represent the width and height of the image respectively.

In the following case study, the 52 × 52 small scale feature
recognition network is simplified. Specifically, the improvement of
YOLOv3 is to simplify the third down-sampling in the backbone net-
work, that is the first eight repeats part. Seven repeats of which are
deleted, so the backbone network is reduced from 53 convolution
layers to 39 convolution layers.

3 FPGA IMPLEMENTATION
3.1 Overall Framework
The proposed vision-based defect inspection system is acceler-
ated and deployed with MPSoC (Multi-processor system-on-a-chip)
FPGA, which allows using low-power and customizable FPGA hard-
ware to replace high power-consumption general-purpose deep
learning workstations. Figure 3 shows the overall framework. In
general, the whole system includes a main host program running
on processing system (PS) and a deep learning processing unit
(DPU) implemented on programmable logic (PL). The general pro-
cessing flow is described as follows. The main program captures
product image from the camera, performs CZS operation according
to the inspection region information in database, and then sends
preprocessed image to DPU for defect recognition.

All these functions are deployed on the TUL PYNQ-Z2 board,
which equipped with a Xilinx ZYNQ 7020 MPSoC FPGA. The
PYNQZ2 supports python programming on PS and supports
DNNDK (Deep Neural Network Development Kit) framework to
deploy DPU on PL for deep learning model acceleration. The power
consumption of PYNQ-Z2 is less than 10w, which has much better
energy efficiency than general-purpose CPU and GPU.

3.2 Deployment
We employs the B1152 DPU architecture Xilinx DNNDK 3.0 frame-
work. It can efficiently process YOLOv3 on 416 × 416 images with
about 3.5 FPS, which can fully meet our mentioned speed perfor-
mance target.

We perform network training, pruning, quantization and com-
piling on a workstation computer. The training dataset is prepared
using actual product images from production site, we manually
labeled types of defects. We use PyTorch to build and train the
optimized YOLOv3 model, and then export it to TensorFlow with
ONNX to bridge the PyTorch and DNNDK flow. Next, DNNDK
performs model optimization and compilation for FPGA deploy-
ment. It performs pruning is to get a new network from the trained
network, replace the variable nodes with the constant values of
the current session, and delete redundant network branches that
do not affect the output. Then data quantization is performed to
convert floating-point numbers into fixed-point numbers. The first
reason for quantization is to use short data types instead of long
data types, for example, to replace 32-bit floating-point types with
8-bit integers, so that the whole network can achieve the purpose
of compression and reduce storage space; the second is that the
DSP units of FPGA are fixed-point processing units, which are good
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Figure 3: Overall Framework of the Proposed Defect Inspection System.

at fixed-point number operation. At last, the compiler transforms
neural network model into binary instructions recognized by DPU,
which is the combination of interpreter, optimizer and code gen-
erator. The interpreter is responsible for parsing the model and
converting it into IR (Intermediate Representation); the optimizer
optimizes IR; and the code generator maps the optimized IR to
DPU instructions. After compiling, a file containing the optimized
YOLOv3 model structure recognized by DPU is generated. Deploy
this file to PYNQ-Z2 and load it in the main host program, the
deployment on FPGA is completed.

4 EXPERIMENTAL RESULTS
4.1 Experiment Design
We collected experimental data from a representative automobile
parts manufacturer. A total of 630 photos of the original samples
were collected by 10 industrial cameras with fixed angles. Theywere
63 photos of the same type of rubber and plastic parts, all 1600×1200
pixels and 8-bit depth. There are 16 kinds of defects markups. The
ratio of good and defect products in the original photos is about
9:1. The workstation computer used in the experiment consists of
AMD R9 3900X CPU, 64GB DDR4 memory, NVIDIA RTX3090 GPU.
The FPGA for deployment was a TUL PYNQ-Z2 board.

We performed data augmentation on the original photos, and
achieved the training set composed of 36,139 photos, and the train-
ing epoch was set to 300. On the workstation computer side, the
trained optimized YOLOv3 model shows an accuracy of 99.2%. And
the inspection time is about 0.01 second. As shown in Table 1, the
inspection time of our model is shortened by 0.004s, and the in-
spection accuracy is improved by 4.2%. Compared with GIoU, our
model has better convergence performance. Compared with other
indicators, our model basically coincides with YOLOv3, indicating
that our model has no loss in performance due to tailoring the
backbone network.

Table 1: Comparison between Our Model and YOLOv3

Training Inspection Accuracy

YOLOv3 28 FPS 0.014 s 95.0%
Our Model 28 FPS 0.010 s 99.2%

Table 2: Processing Time Comparison betweenWorkstation
Computer and PYNQ-Z2

Preprocess 1600 × 1200 416 × 416

Host 0.24 s 0.01 s 0.01 s
PYNQ-Z2 0.31 s 1.20 s 0.65 s

4.2 Deployment Result
The experimental results on PYNQ-Z2 deployment also showed
high accuracy. The processing time comparison between worksta-
tion computer and PYNQ-Z2 are shown in Table 2. Through the
artificial random validation with 100 photos, the DPU inference
results presents the same inference results as the workstation com-
puter side. In addition, the MPSoC shows a reasonable processing
speed with much lower power consumption than a workstation
computer. The performance on PYQN-Z2 canmeet our design target
mentioned in Section 1.
As the processing time comparison of different models on PYNQZ2
shown in Table 3, CZS operation and tailoring YOLOv3 can both
reduce the processing time. Table 4 shows the performance compar-
ison with other representative industry defect inspection studies.
Nico et al. [6] used image segmentation based model. Ting et al.
[7] and Chunyang et al. [8] used deep learning based model but
YOLO. Junfeng et al. [3] also used classical YOLOv3. Compared
with these studies, our approach has achieved better accuracy on
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Table 3: Processing Time Comparison of Different Models
on PYNQ-Z2

SetImage RunTask Deal

No preprocess,
YOLOv3

0.71 s 0.45 s 1.20 s

Preprocess,
YOLOv3

0.13 s 0.45 s 0.73 s

Preprocess, our
model

0.13 s 0.38 s 0.65 s

Table 4: Performance Comparison with Other Representa-
tive Industry Defect Inspection Studies

Accuracy 1/FPS mAPbbox
Nico Prappacher [6] 98% 0.153 -
Ting He [7] 98.7% 0.007 -
Chunyang Xia [8] 98.4% - -
Junfeng Jing [3] 98% 0.046 -
Our model 99.2% 0.010 0.991

industry defect inspection with comparatively shorter inspection
times (on workstation computer). In addition, our approach can be
promoted in the enterprise level application to complete the edge
detection work in a cheap, stable and green way.

5 CONCLUSION
In this paper, we propose a novel efficient vision-based defect in-
spection YOLOv3 model improved with attention mechanism and
evaluated its FPGA implementation. The experimental result shows
that the accuracy reached 99.2%, the processing time of each image
is less than 1 second, and the power consumption is lower than
10w. The proposed framework is expected to be widely deployed
in industrial field as a low-cost defect inspection solution.
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