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ABSTRACT

Combining satellite-ground network with the edge computing, an
emerging research direction is to use low-orbit satellites as edge
nodes to provide computing services for ground users and space
missions. Due to the motion of satellites around the earth, the
ground region covered by the satellite changes constantly over
time, and the service traffic also changes accordingly. Therefore,
the method of running a constant computing resource will lead
to insufficient service capacity or high energy consumption. In
this paper, we proposed a two-step dynamic resource management
strategy SRTMS, which makes use of the certainty of satellite orbit
and historical service data to predict the business traffic of future
service region and dynamically scale the amount of in-orbit virtual
computing resources. Through the strategy, energy consumption
is reduced by 73% compared to the traditional mode in which all
resources are operated at full capacity, saving resources that can be
used for other payloads.
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1 INTRODUCTION

In order to adapt to the rapid development of satellite networks
and optimize the service quality of on-orbit satellites, the research
on combining ground edge computing technology with spatial in-
formation networks has attracted much attention. Compared with
the traditional satellite network [1], where the satellite is only used
for data forwarding, the core of the research of satellite edge com-
puting (SEC) is to deploy computing and storage resources to Low
Earth Orbit (LEO) satellites at the edge of space-ground network,
so that the on-orbit computing capabilities can be used to achieve
online task processing[2-4]. Therefore, through the cooperation
of LEO satellites and ground data centers, it is possible to provide
users with multi-level, low-latency, and global coverage computing
services.

However, in contrast with the edge computing in the terrestrial
network, the service pattern of on-orbit satellite computing has
brought new challenges. There are two major characteristics of
resource limitation and dynamic in SEC. On the one hand, due to
the limited cost of satellite, the payload has the requirements of low
energy consumption and small size. So that, only various embedded
boards with simplified systems, smaller volumes, and lower energy
consumption can be used for computing support [5-7]. On the other
hand, because the satellites are in uninterrupted orbital motion, the
computing platform on board is in real-time motion relative to the
ground, that is, the service area on the ground changes with time.
Coupled with the dynamic changes of the inter-satellite network
topology, SEC has the dual dynamic characteristics of network and
service.

So as to improve the service capability of on-orbit computing
resources, a resource management solution for satellite dynamics
is an important research direction. For service dynamics, there are
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significant differences in business characteristics in various regions
around the world. For example, in the polar and ocean region, the
business traffic is small and the type is mostly remote sensing image
processing. In the bustling urban area, the business traffic is more
intensive and mostly for time-sensitive tasks. Hence, under the
condition of different regionalization of services, the satellite needs
to optimize the configuration of existing resources in real-time
during the movement process.

However, as the SEC research is in the initial stage [8], there is
no relevant research to optimize the dynamic computing resources
management of satellites. And it is unreasonable to apply ground-
based research directly to the satellite computing platform. In this
paper, according to the special space computing environment, we
proposed a dynamic predictive resource management strategy for
SEG, so as to reduce energy consumption of satellite computing
platform while meeting the business needs of different regions.
Specifically, the proposed Satellite Resources Two-step Manage-
ment Strategy (SRTMS) utilizes a resource predictive strategy and a
real configuration policy to dynamically scale the number of VMs,
so as to optimize energy consumption of computing resource on
LEO satellite constellation.

The content of this paper is organized as follows: The section 2
describes the existing research work. System model is presented
in section 3. The dynamic predictive VM deployment strategy is
proposed in section 4. Section 5 presents the evaluation results. The
last section is the conclusion.

2 RELATED WORK

As mentioned above, there is a lack of research on the management
of satellite computing resources. Therefore, in this section, studies
on the problem of dynamic virtual machines (VMs) management
problem in ground are discussed. In the research of computing re-
source management aimed at reducing energy consumption, virtual
resources are mainly managed, and the main idea is to reduce the
number of running VMs. Sun et al. [9] proposed an efficient VM
management method in mobile edge computing (MEC). Through
the proposed ILP and Tetris algorithms, task requests are placed on
the MEC servers that met the least demand to minimize the number
of active MEC servers and reduced the 22.2% energy consumption.
Zhang et al. [10] proposed a workflow-based heuristic algorithm
AMS, which is oriented to applications with multi-level services
and believes that VMs can be shared by multiple IoT devices. With
the ability to determine the number and location of each type of
service VM, AMS can reduce the number of running VM by 28.4%
and the cost of deployment by 33.9% in cases where user satisfaction
rates are comparable.

Several studies have addressed dynamic VM management by
predicting the task demand to optimize energy consumption. Re-
search [11] proposed the non-homogeneous Markov model to pre-
dict the resource demand of the data source, and uses the heuristic
algorithm to solve the mapping between VM and server, so as to
minimize the total task consumption cost. In the literature [12-14],
they proposed to predict the future resource utilization based on
the historical resources data to better manage the VM placement
while maintaining the QoS guarantee. Based on the prediction of
grey Markov model[12] ,the regression model [13] and the Markov
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chains [14], these studies reduce the data center energy consump-
tion by more than 30%. Chehelgerdi-Samani et al. [15] proposed
a framework called PCVM.ARIMA, which aims to minimize the
number of physical machines. By dynamically integrating the VM,
detecting physical machine overloads, and minimizing the SLA of
the ARIMA prediction model, the framework achieves a significant
reduction in energy consumption while increasing the QoS factor.

In the above ground-based research of VM, the location of server
and service area is fixed, and the received traffic has periodic and
constant characteristics in time and space. For example, in study of
Tang et al. [16], the upper limit of traffic is predicted by analyzing
the traffic data of real operators in typical regions, and the overall
VNF placing is planned with the goal of minimizing the source
required by providing services for all traffic. However, in the SEC
scenario, there is a lack of a large amount of real data, and the service
area changes with the orbit and the rotation of the earth. Hence,
the business traffic can only be predicted through the periodic
orbital movement of the satellite, which cannot be applied to the
spatio-temporal characteristics of the ground.

3 SYSTEM MODEL

3.1 Ground Business Model

The global region is divided into A set of non-overlapping subdo-
mains A = {1, ..., A}. For any region a € A, there is a weight as
follows:

We=WS4 + aWP, (1)
W S,is the static weight, which is determined by the basic flow of
regional business (which can generally be estimated by regional
population density) through the max-min standardized formula.
The WP,represents the priority weight, which is manually set to
affect the total weight of the region. The « is an impact factor.

In any region a, there is a random set of users U, =
{ul,u2,...,ul?} and a list of business types List,. The ng is the
total number of users in the region, which is positively corre-
lated with WP,. And List, is a static table set by the regional
business characteristics. The user u, generates a task request
Taskl, = {yi, type;, d;} randomly, where y; represents the resource
amount of the task request and type; represents the task type of the
request, with type; € List,. The d; represents the tolerable delay
of the task, and the task whose result is not returned before this
time is considered as a failure.

3.2 Satellite Resource Model

For the satellite cluster, it can be represented as a set S =
{51,582, ...,sn} , and each satellite carries heterogeneous comput-
ing resources for on-orbit task processing. For any satellites; =
{orb;, cover;j, rsc;}, orb; and cover;denote the orbital attribute and
the coverage attribute of the satellite payload. The orb; includes six
orbital elements (semi-major axis, eccentricity, orbital inclination,
right ascension of ascending node, argument of perigee, and true
anomaly), represented as orb;= {a, e, i, Q, w, tp}. For the coverage
attribute cover; = {{, (4, ¢)}, ¥ is the coverage angle, which can
be calculated through the minimum observation angle 6. (4, ¢) is
the longitude and latitude coordinate set of sub-satellite points, in-
cluding (A, )= {(A, @)},..., (A, ©)T} when the satellite service time
is discretized into an equal time slot representation 7 = {1, ..., T}.
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rsc; ={C;,C f } is the attribute of computing resources, where C;
represents the total amount of single satellite computing resources.
In order to simplify the model, it is assumed that computing tasks
are performed by VMs relying on physical computing resources,
and all VMs use similar processing power Cy, and energy con-
sumption E;,when running. Therefore, the total amount of re-
sources Cjcan be represented by the maximum number of VM that
can be run. Same as above, Cf represents the amount of remain-
ing resources in slot ¢, which is the number of VMs that are not
running but available. Furthermore, there is a set of running VMs
Vs, = {véi , vgi, cvey vfi" }on the satellite s;. For a single running VM

V{;i, the available processing power of in time slot ¢ is C? (vél)

4 VM RESOURCE DYNAMIC SCALING
STRATEGY

In order to reduce the unnecessary energy consumption of on-orbit
computing resources, we propose a VM dynamic scaling manage-
ment strategy based on traffic prediction. The main idea of the
strategy is to combine the characteristics of orbital motion and
ground region, and to dynamically scale the number of VMs by
predicting the traffic in the next region to be served by the satellite.
Through that, it can reduce the number of active VMs in the region
with low traffic, so as to reduce energy consumption.

4.1 Dynamic Predictive Strategy for VM
Instances using Historical Deviation Values

First of all, it is necessary to forecast the business traffic of the
future region. There are two important points to note here:

1. To provide high availability of services, we should always
ensure that there are sufficient resources to service most the tasks
received on the satellite, so the predicted parameters should meet
the upper limit of business traffic.

2. To simplify calculations and adapt to the out-of-sync feature
of the satellites in the constellation, each satellite is responsible for
its own VM management and traffic prediction for the next service
region in the time slot ¢.

The subset of regional order of the satellite s; path is defined
as A, = {Asil,Asiz, .., As;"}. In each region, the service time is
T(AJ(SA )) = kAT, where k is a positive integer.

Thlerefore, the traffic prediction strategy is defined as follows:
When the satellite s;enters region Ag l.j ~1, the number of VMs in
the region Ay, is predicted. The predicted number of required VMs
is defined as:

W] .
Jj=2 .
B(Als'i): w it XG(A )(1+/1f[As,~ D1<j<n @
A JSi,j= 1

The B(Ajsi) is the minimum number of VMs meeting the future
maximum traffic of region As,’. The number of VMs in the initial
region is linearly correlated with the current region weight, and f is
the influence factor. The number of VMs in the latter-order region
is positively correlated with the weight ratio of the previous region.
At the same time, in order to ensure the principle of high service
availability and to modify the prediction deviation of historical
areas, incremental service factor Af [A] 2] is added to the demand
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prediction formula. A is an incremental impact parameter between
0 and 1, representing the importance of historical business data to
the prediction.

f [Ajsi_z] is defined as the deviation adjustment formula based
on the task failure rate in the historical region. Here, we intro-
duce the adjustment principle 3—c[16], that is, the increased pro-
portion of VM instances according to the historical failure rate is
E(Ai:z) + BU(A];Z). The E(A]s‘i_z) is the average failure rate of A£:2
and previous regional tasks, and O'(A]szz) is the standard deviation
of failure rate. The average failure rate[16] is defined as:

— j—2—N
Z =2 (Al 27N 3)

J=j—2-N

el H=—5

wherey € [0, 1] represents the impact of historical data on the av-
erage failure rate, which is generally set to close to 0, that is, the
farther away the historical area is from the current area, the less
impact the failure rate has on the current adjustment. Correspond-
ingly, the mean variance of failure rate is defined as:

j=2
D1 Al — Al NP @
J=j-2-N

ol = —k

The standard deviation is:

o (AL H)=Jo(a (AL %) 5)

Based on the above definition, the number of incremental VM
instances is defined as:

WAJs'- i—1 j—2 i—2

—— X G(AL, ) x A(e(AL, %) + 30(AL, 7)) (6)
ALY

The details of the G(Ajs-i_l) function is defined in the formula (8). As

for B(Ajs-l.), the predicted number of VMs in each region, will not
exceed the maximum number of supported instances of on-orbit
computing resources, which is expressed as follows:

B(A}) < Civi,j "
B(A{qi) € NaturalnumbersetN

4.2 VM Configuration Policy Based on
Thresholds

After calculating the predicted number of VMs, it is necessary to
combine the actual task process with the concept of threshold to
determine the actual number of VMs to be maintained. The received
task process needs to be explained: when the communication beam
of satellite s; covers the region Ag,/, users randomly distributed in
the region will initiate task requests to the satellite. The task will
be processed by the local VM after the satellite accepts it, and the
Run-to-completion mode will be used for sequential calculation.
Since the startup and shutdown of VM instances have corre-
sponding losses in terms of time and energy, we need to limit
unnecessary changes in the scale of VMs. Therefore, the actual
number of VMs G(Ajsi) is introduced here, which can be defined as:

B(A{"‘) <1+R
= e

j—1
O, ) 1Re < B(ALY) (8)

GA},) =
B(Asl_ ), other
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Re is the scaling capacity threshold, and the optimal value of it can
be determined by a large number of data experiments. The initial
setting here is 0.1. Specifically, when the predicted number changes
are greater than or less than the threshold, the actual number will
be determined according to the predicted number. Otherwise, the
number of VMs does not change if the threshold is not reached.

The actual operation of VM configuration needs to be divided
into two parts: scaling up and scaling down. Existing studies [16]
investigated the time consumption of different VM operations based
on the proprietary test platform of real operator DCN. The average
time to create a new VM is about 6 minutes, and it takes 5 seconds
to shut down a VM. Therefore, when the predicted business traffic
is smaller, we can scale down the scale of VMs to reduce the energy
consumption of physical computing resources.

Hence, we can derive the optimal time for the actual operation
of VM configuration as:

(1) VM scaling up: Since it takes a long time to create a VM, the
scaling up operation will execute when it enters the region Ajs'i_1

and after G(Ajs.i) is determined.
(2) VM scaling down: Since it takes a short time to shut down a
VM ,the scaling down operation executes after leaving the region
j—1
AL

4.3 The Two-step Integrated Management
Strategy SRTMS

In this section, a two-step integrated management strategy SRTMS
is proposed based on the mentioned strategies. The integrated strat-
egy is independently operated by the satellite, which is divided into
two stages: prediction and actual configuration. When the satellite
enters a new region Ag l.j ~1 the minimum number of VMs satisfy-
ing the future maximum traffic of region A,/ is firstly calculated
through the prediction strategy, that is, the theoretical value of
B(Ajs,-)~ Next, the VM configuration strategy based on threshold
value is used to calculate the actual number of instances which
is the G(Ajsi). By implementing the two-step strategy on all the
satellites in the satellite constellation, the VMs can be scaled in
real-time and the total energy consumption of constellation can be
reduced.

For the satellite s;, the list A[Aj, Jrecords the actual number of

VMs G(Aé:k), the number of theoretical VMs B(Ajs-:k), the area

weight Wy and task failure rate e(Ajs.i_k)for each region that has
passed through. The algorithm pseudo-code is as follows:

5 EVALUATION RESULTS
5.1 Experimental Setup

The satellite-ground communication simulation is mainly based on
STK (Satellite Tool Kit) software, and the dynamic configuration
simulation of VM resources is mainly implemented by MATLAB.
The satellite-ground regional visibility is provided by the STK sim-
ulation results, and the regional static weight data is calculated
by the LandScan global population dataset [17] developed by the
Oak Ridge National Laboratory (ORNL) of the US Department of
Energy.Based on the LandScan, the global regional weight data grid
that divides regions using equal latitude and longitude is shown in
the Figure 1
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Algorithm 1 SRTMS Algorithm

Input:List of results for completed regionsA[Aj, Jand the weight
of the next area Wy4.

Output:The result list of the areaA[Aj,], and the actual number

of instances in the next area G(A]sl. ).

Procedure:

1: while A[Aj,] list has values do

2: Read e(Aé:k) according to the backtracking range N(set initially
at 3). '

3: Calculate the average historical failure rate e(A]si_Z)and standard

deviation J(Ajsl__z) according to formulas (3) and (5) .

4: end while .

5: Obtain the deviation adjustment result f [A]si_z].

6: Through formula (2) and the current regional weight W,_1, the
next regional weight W4 and the number of current regional
instancesG(A]si_l), the number of theoretical VMs of the next
region B(A]s,») is calculated.

7: Calculate actual number of instances G(Ajsi) by formula (7) and
constraint (8).

8: UpdateA[ A, |

9: return A[Aj, ] and G(Ajsi ).

Figure 1: LandScan Global Population Data Grid.

5.1.1 The Constellation Parameters. In STK, Walker constellation
is simulated: the orbital altitude is 1000 km, there are 3 orbital
planes, the orbital inclination is 45 degrees, and each orbital planes 8
satellites. Therefore, there are a total of 24 satellites. Figure 2 shows
the dynamic changes result of satellite-ground communication.
The curves are the orbits of the satellites, and the circles are the
satellite-ground communication regions.

5.1.2  Random Task Generator. Implemented by MATLAB, random
generation of non-uniform user tasks in different areas is realized.
Input parameters are shown in the Table 1

5.1.3 VM Instance-related Parameters. We set the total amount of
resources C;on a single satellite as follows: The number of CPUs is
8, and the total amount of memory is 8 GB. We set the total memory
of a single VM to be 1GB, the number of CPU of a single VM to be
1, and the power consumption of a single VM to be 20 W.
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Figure 2: Dynamic Changes of Satellite-ground Communica-

tion.

Table 1: Task Generator Input Parameter

Maximum number of
users in each area

n=10,20,30,40,50,60,70,80,90,100

Biggest task request yi = 100Mbit(memory), 30s(CPU)
resources

Task request types: |Listg| =1

Maximum task delay di = 5s

Fifty experiments were conducted under each user number value,
and the user task distribution was recorded in each experiment.

5.2 Results

Based on the aforementioned parameters, the experiments compare
the performance of three instance modes in full capacity VM, half
capacity VM, and SRTMS in terms of energy consumption.

The total energy consumption is set using:

E= ), GAl) x T(AL,) X Eum ©)

Figure 3 shows the changes in total VM energy consumption of a
single satellite with the maximum number of users in the region
within 24 hours. Figure 4 shows the changes in the average failure
rate of a single satellite with the maximum number of users in the
region within 24 hours. The average mission failure rate is defined
as the average ratio of failed tasks to the total number of tasks in
different regions. Task failures occur because of missing deadlines
or running out of resources.

In the full capacity mode, the number of single satellite VMs
always keeps the maximum running number, that is, the situation
that all resources are occupied in the traditional satellite computing
mode. In half capacity mode, the number of VMs should always
be half of the maximum number, and the energy consumption
should be in half value of full capacity mode. Therefore, in full
capacity mode and half capacity mode, the number of VMs and
energy consumption remains constant and does not change with
the number of users.

For the entire constellation within 24 hours, the total energy
consumption and mission failure rate when the maximum number
of users is set to 80 is shown in Table 2

CSAE 2021, October 19-21, 2021, Sanya, China

g X107

7F [EEsrTMS | 4
—o—FULL

6 —o—HALF

Total energy consumption (J)
S

111

10 20 30 40 50 60 70 8 90 100
Numbers of user

Figure 3: The Variation of Total Energy Consumption of VM

of a Single Satellite Varies with the Maximum Number of
Users in the Region Within 24 Hours.
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Figure 4: The Variation of the Average Mission Failure Rate
of a Single Satellite in 24 Hours varies with the Maximum
Number of Users in the Region.

Table 2: Total Energy Consumption and Mission Failure
Rate of VM in 24 Hours across the Constellation

Mean Average mission Total energy
failure rate consumption of VM (J)
Full VMs 5.23% 2.14*10°
Half VMs 8.61% 1.07*10°
SRTMS 7.37% 5.73108

It can be seen that the SRTMS algorithm reduces the energy
consumption by 73% compared to the full capacity VM mode and
46% compared to the half capacity VM mode.

From the above figures and table, it can be seen that if the task
failure rate does not significantly change, the optimization of total
energy consumption in the SRTMS algorithm will remain at a good
level. On the other hand, due to the continual change of the number
of VMs in SRTMS, the capacity may not be scaled up in time in
some high-traffic regions. So the failure rate performance is worse
than that of the full capacity mode. In future work, the failure rate
of SRTMS can be reduced by optimizing the scaling threshold and
the historical backtracking range.
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6 CONCLUSIONS

In this paper, based on the special SEC scenario, we have intro-
duced a dynamic predictive two-step VM scaling strategy SRTMS,
which aims at reducing redundant energy consumption of satellite
computing platform while meeting the business requirements of
different regions. The evaluation results show that SRTMS method
can obtain an effective solution, scaling the number of VMs for the
dynamic ground region in time. Under the condition that the task
requirements are basically satisfied, the total energy consumption
of on-orbit VMs is greatly reduced, which is 73% lower than the
baseline of always running all VM resources.
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