
Real-Time Entity Resolution by Forest-Based Indexing in
Database Systems with Vertical Fragmentations
Liang Zhu

School of Cyber Security and
Computer Science, Hebei University,

Baoding, Hebei 071002, China
zhu@hbu.edu.cn

Jiapeng Yang
School of Cyber Security and

Computer Science, Hebei University,
Baoding, Hebei 071002, China

jarynmail@163.com

Xin Song
School of Cyber Security and

Computer Science, Hebei University,
Baoding, Hebei 071002, China

songx@hbu.edu.cn

Yu Wang
School of Cyber Security and

Computer Science, Hebei University,
Baoding, Hebei 071002, China

wy@hbu.edu.cn

Yonggang Wei
School of Cyber Security and

Computer Science, Hebei University,
Baoding, Hebei 071002, China

wyg@hbu.edu.cn

ABSTRACT
Entity resolution (ER) is the process of identifying and matching
which tuples/records in a dataset/relation refer to the same real-
world entity. Real-time ER is a challenge for large datasets. Schema
decomposition is of importance in (distributed) database systems,
which partitions a relation/table into a set of vertical fragmenta-
tions. For this scenario, we study real-time ER in this paper. By
creating forest-based indexing and defining ranking functions and
corresponding algorithms, we propose an approach to resolve query
tuples over dirty relations of a set of vertical fragmentations with
duplicates, misspellings, or NULL values of text attributes. Exten-
sive experiments are conducted to demonstrate the performances
of our proposed approach.

CCS CONCEPTS
• Information system; • Data management systems; • Infor-
mation integration;

KEYWORDS
Multi-tables, Entity resolution, Forest index, Dirty dataset, Ranking
function

ACM Reference Format:
Liang Zhu, Jiapeng Yang, Xin Song, YuWang, and YonggangWei. 2021. Real-
Time Entity Resolution by Forest-Based Indexing in Database Systems with
Vertical Fragmentations. In The 5th International Conference on Computer
Science and Application Engineering (CSAE 2021), October 19–21, 2021, Sanya,
China. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3487075.
3487142

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487142

1 INTRODUCTION
ER is the process of identifying and matching tuples/records from
one or multiple data sources that describing the same real-world
entity [1], which is one of the most critical tasks for improving data
quality and increasing the reliability of data analytics [2]. ER has
been the focus of several works [3], and is also known as record
linkage, data deduplication, merge-purge, and tuple matching [4].
ER is a challenging problem, because people represent and misrep-
resent information about real-world entities in various ways, and
databases often do not contain unique entity identifiers across dif-
ferent sources [5]. Generally, ER is a slow process, e.g., it takes from
six months to two years to establish an average data warehouse
in practice, and a main source of delay is the process of ER [6]. ER
consists of two parts: (1) the candidate selection step, which deter-
mines the entities worth comparing, and (2) the candidate matching
step, or simply Matching, which compares the selected entities to
determine whether they represent the same real-world object [7].
Step 1 leads to the set of candidate tuples; Step 2 involves pairwise
comparisons, i.e., time-consuming operations that typically apply
string similaritymeasures to pairs of entities, dominating the overall
cost of ER [8]. For (distributed) databases with vertical fragmenta-
tions, data is usually stored in different relations/tables. When ER
is performed on datasets, several tables need to be operated, which
further increases the difficulty of resolving query tuples. Real-time
ER or on-the-fly ER (also known as query-time ER, query-driven
ER, or query-aware ER) is the process of matching a query record in
sub-second time with records in a database that represent the same
real-world entity [9], or in (near) real-time, ideally within a few
seconds at most [10]. In 2014, [9] proposed a forest-based sorted
neighborhood index that uses multiple index trees with different
sorting keys to facilitate real-time ER for read-most databases. It
aims to reduce the effect of errors and variations in attribute values
on matching quality by building several distinct index trees. In
2018, [11] introduced an extensible sub-group block method of ER
over multi-data sources, which uses an effective search of graph
structure to identify similar groups in multiple data sources. In
2019, [12] proposed based on an informativeness measure for simi-
larity vectors by considering their relationship to already classified
vectors. In 2020, [7] review several works under two different but

https://doi.org/10.1145/3487075.3487142
https://doi.org/10.1145/3487075.3487142
https://doi.org/10.1145/3487075.3487142

CSAE 2021, October 19–21, 2021, Sanya, China Liang Zhu et al.

related frameworks: blocking and filtering. [13] presented a scal-
able multi-source ER framework that uses model words to generate
partitions, combining blocks by using logical operators.

However, there is little literature on the real-time ER over dirty
relations of a set of vertical fragmentations. Our contributions
are summarized below: (1) Creating B+-trees for corresponding
attributes in tables, and realized ER algorithms of small forests com-
posed of B+-trees. (2) Constructing the global index of multi-tables
by a forest composed of many small forests created by tables. (3)
A ranking function based on a fixed-length array is designed for
strings of different lengths, which greatly reduces the resolving
time and space by the algorithm. (4) Conducting extensive experi-
ments to evaluate the effectiveness and efficiency of the proposed
approach for dirty datasets.

The rest of this paper is organized as follows. In Section 2, the
problem definition is introduced. Section 3 gives the method of
multi-tables and the definition of the ranking function. In Section
4, we present the experimental results. Finally, Section 5 concludes
the paper.

2 PROBLEM DEFINITION
Suppose that relationR(tid,A1,A2, ···,Am) hasm text attributes {A1,
A2, · · ·, Am}, and other attributes (such as numeric value, date, etc.)
are also regarded as text attributes. R is decomposed into multiple
relations/tables {R1, R2, · · ·, Rv} according to the primary key (or
tuple identifier) tid, where R1(tid, A11, A12, · · ·, A1|c1|), R2(tid, A21,
A22, · · ·, A2|c2|), · · ·, Rv(tid, Av1, Av2, · · ·, Av |cv |), and (A1, A2, · · ·,
Am) = (A11, A12, · · ·, A1|c1|)

⋃
(A21, A22, · · ·, A2|c2|)

⋃
· · ·

⋃
(Av1,

Av2, · · ·, Av |cv |), then R = R1 ▷◁ R2 ▷◁ · · · ▷◁ Rv. Moreover, let |R|
indicate the size of R (i.e., the number of tuples in R).

Schema decomposition according to the primary key tid is a com-
monly used lossless decomposition method in distributed database
systems [14].

For the tuple t = (tid, tw1, tw2, · · ·, twm) ∈ R, twi = t[Ai] is a
tuple word, 1 ≤ i ≤ m. Let t1 = (tid, tw11, tw12, · · ·, tw1|c1|) ∈ R1,
t2 = (tid, tw21, tw22, · · ·, tw2|c2|) ∈ R2, · · ·, tv = (tid, twv1, twv2, · · ·,
twv |cv |) ∈ Rv, and t = t1 ▷◁ t2 ▷◁ · · · ▷◁ tv. If there are t and s in R
describing the same real-world entity, and t[tid] , s[tid], then t
and s are considered to be duplicates, denoted as t ∼ s. We also said
that the relation R or R1 ▷◁ R2 ▷◁ · · · ▷◁ Rv is dirty.

Note: the terms/phrases “dirty data, low-quality data, or poor-
quality data” may have different meanings. More details about
poor-quality data can be found in [15].

Suppose that E = {e1, e2, · · ·, ek} is the set of entities e in the
real-world described by the relation R (i.e., R1 ▷◁ R2 ▷◁ · · · ▷◁ Rv) Let
the mapping φ: R → E, (t) = φ(s) for t, s ∈ R if and only if t and s
describe the same entity in E, denoted as t ∼ s. The goal of ER is to
find an effective and efficient mapping φ: R→ E, which will group
tuples describing the same real-world entity into its corresponding
cluster C. Suppose {C1, C2, · · ·, Ck} is the set of clusters grouped
by mapping φ, thus (1) R = C1

⋃
C2

⋃
· · ·

⋃
Ck. (2) Ci

⋂
Cj = �

(1 ≤ i, j ≤ k).

3 INDEX AND ALGORITHMS
3.1 Creation of Index
We create the forest index F = {f 1, f 2, · · ·, fv}, as shown in Figure 1,
f 1 = {tr11, tr12, · · ·, tr1|f1|}, f 2 = (tr21, tr22, · · ·, tr2|f2|), · · ·, fv = (trv1,

Figure 1: Forest Index.

trv2, · · ·, trv |fv |), where tr is a B+-tree corresponds to an attribute
in R, and fi is a "small forest" contains |fi| B+-trees for the Vertical
Fragmentation Ri of R (1 ≤ i ≤ v).

For t1 = (tid, tw11, tw12, · · ·, tw1|c1|) ∈ R1, t2 = (tid, tw21, tw22,
· · ·, tw2|c2|) ∈ R2, · · ·, tv = (tid, twv1, twv2, · · ·, twv |cv |) ∈ Rv, and
t = t1 ▷◁ t2 ▷◁ · · · ▷◁ tv, selecting some pairs {(tid, twij)}, we create
B+-tree indices where tid is the key and twij is a value, 1 ≤ i ≤ v, 1
≤ j ≤ |ci|.

3.2 Ranking Function
Inspired by the Hamming Distance and Edit Distance, we design our
ranking function below. For a tuple t with t[A1, A2, · · ·, An] = (tw1,
tw2, · · ·, tw1n) (1 ≤ n ≤m), we get a vector for t by using the flowing
methods: (1) We concatenate all tuple values (tw1, tw2, · · ·, tw1n) of
t into a new string s = tw1tw2· · ·tw1n, and then convert the string
s to lowercase. (2) For each character x in s, we use formula (1) to
calculate the difference z = G (x) between its ASCII and the values
97 or 48 (i.e., the ASCII of ‘a’ or ‘0’). (3) We create a fixed length
array by using Z = {z1, z2, · · ·, z|s |} with a numerical array a[x] and
formula (2), and then treat the array a as a vector α .

G (x) =

{
lower (x) − 97, ′a′ ≤ x ≤′ z′, ′A′ ≤ x ≤′ Z ′

x − 48, ′0′ ≤ x ≤′ 9′ (1)

(a,x) = a [x] + 1 (2)

For two tuples p and q, finally, we get vectors α and β respec-
tively, then the formula of ranking score for the two tuples is

Rankinд Score (p,q) = sum (abs(a − β)) (3)

For example, let x = (‘Jaryn’, ‘389635’), y = (‘Zanna’, ‘365498’).
Then the vector of x is (1 0 0 2 0 1 1 0 1 2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0) as shown in Figure 2, and the vector of y is (2 0 0 1 1 1 1 0 1 1 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 1). The ranking score between x and y is 7.
Moreover, if w = (‘Jarryn’, ‘389635’), then the score between x and
w is 1.

Two thresholds τ 2 > τ 1 ≥ 0 will be given, for two tuples x and
y with ranking score q = RankingScore(x, y), if q ≤ τ 1, we think
that the two tuples are the same, if τ 1 < q ≤ τ 2, the two tuples are
similar, and if q > τ 2, they are different.

Real-Time Entity Resolution by Forest-Based Indexing in Database Systems with Vertical Fragmentations CSAE 2021, October 19–21, 2021, Sanya, China

Figure 2: Obtaining the Vector of x.

3.3 Entity Resolution
Let {R1, R2, · · ·, Rv} be the v vertical fragmentations of R. For a
new tuple t = (tid, tw1, tw2, · · ·, twm) ∈ R = R1 ▷◁ R2 ▷◁ · · · ▷◁ Rv.
According to the pattern of {R1, R2, · · ·, Rv}, as shown in Formula
(4), t is decomposed into t1 = (tid, tw11, tw12, · · ·, tw1|c1|), t2 = (tid,
tw21, tw22, · · ·, tw2|c2|), · · ·, tv = (tid, twv1, twv2, · · ·, twv |cv |), and
t = t1 ▷◁ t2 ▷◁ · · · ▷◁ tv, then send it to their corresponding small
forest f 1, f 2, · · ·, fv ∈ F .

t =

©­­­­«
t1
t2
...

tv

ª®®®®¬
=

©­­­­«
m11 m12 · · · · · · m1 |c1 |
m21 m22 · · · m2 |c2 |
...

...
...
...

mv1 mv2 · · · · · · · · · mv |cv |

ª®®®®¬
(4)

Furthermore, ti = (tid, twi1, twi2, · · ·, twi |ci |) is divided into pairs
mij = (tid, twij). By using B+-trees for mij, we obtain the sets of tid
of the same and similar tuples, i.e., {oij}.

Algorithm LocalER
Input ti ,Ri
Output [ui , Si]

1 mi = {mi1,mi2, · · ·,mi |ci |} // Divide ti intomij
2 For each mij in mi

// Query and insert mij in its corresponding tree
3 oij = trij(key= twij, value= tid);
4 ui = ui

⋂
oij; // Get the local “same” set ui

5 si = si
⋃

oij; // Get the local similar set si
6 End For
7 Return [ui, si]; // Return sets ui , si

The LocalER algorithm resolves a local relation, in which, Line
4 based on intersection obtains the set of tids of the same tuples,
Line 5 based on union gets the set of tids of the similar tuples, and
Line 7 returns all the sets of {ui} and {si}, which will be used in the
following algorithm GlobalER-1.

Algorithm GlobalER-1 calls GlobalER-2 and GlobalER-3, in
which, the function Centroid() finds the center of a cluster by com-
puting the average of the ranking scores of each tuple in the cluster
to the other tuples and selecting the smallest of them as the center
of the cluster.

In algorithm GlobalER-2, bothU and S are nonempty sets, where
U contains the same tuples, while S contains the similar tuples. We
select a tuple as the representative (i.e., rep) from U . Lines 2-8 find
the “same tuples” (i.e., RankingScore ≤ τ 1) from S and recalculate
the representative of the cluster. Then Lines 9-13 find similar tuples
(i.e., RankingScore ≤ τ 2) in S with the new cluster representative.

Algorithm GlobalER − 1
Input t
Output [rep, Cr ep]

1 t = {t1, t2, · · ·, tv}; // Decompose t into {t1, t2, · · ·, tv}
2 For each ti in t
3 [ui , si] = LocalER(ti, Ri); // Call LocalER for ti
4 End For
5 U = u1

⋂
u2

⋂
· · ·

⋂
uv; // Get the global repeated set ui

6 S = s1
⋂

s2
⋂

· · ·
⋂

sv; // Get the global similar set si
7 U = tuple(U); // Take out tuples of tid ∈ U from R
8 S = tuple(S); // Take out tuples of tid ∈ S from R
9 If size(U) > 0 and size(S) > 0

// U and S both contain tuples, call GlobalER-2
10 [rep, Crep] = GlobalER-2;
11 Else

// only one of U or S contain tuples, call GlobalER-3
12 [rep, Crep] = GlobalER-3;
13 End If

// the representative rep and its corresponding cluster C
14 Return [rep, Crep];

Algorithm GlobalER − 2
Input t
Output [rep, Cr ep]

// Set the first tuple of U as the cluster representative
1 rep = U [0];

// Calculate scores of the tuple rep and tuples in S
2 For each tuple t in S
3 If RankingScore(rep, t) ≤ τ 1

// Add tuples with a score less than τ 1 to the cluster
4 C.append(t);
5 End If
6 End For
7 C.append(rep);
8 rep = Centroid(C); // Call Centroid to reselect rep in C

// Recalculate scores of the new rep and tuples in S
9 For each tuple t in S
10 If RankingScore(rep, t) ≤ τ 2

// Add tuples with a score less than τ 2 to the cluster
11 C.append(t);
12 End If
13 End For
14 C = C

⋃
U ; // Add the tuples of U to cluster C

15 Return [rep, Crep];

GlobalER-3 will resolve the tuples when one of U and S is an
empty set. If U is not nonempty, we will use U as cluster C directly.
Otherwise, If S is not nonempty, we will find the center of S and
find those tuples with RankingScore ≤ τ 2, and insert them into C.

By using the above algorithms, for a query tuple t = (tid, tw1,
tw2, · · ·, twm), we can resolve it over {R1, R2, · · ·, Rv}.

CSAE 2021, October 19–21, 2021, Sanya, China Liang Zhu et al.

Algorithm GlobalER − 3
Input t
Output [rep, Cr ep]

1 If size(U) == 0 and size(S) > 0 // Only S contains tuples
// Select the cluster representative rep from S directly

2 rep = Centroid(S);
3 For each tuple t in S
4 If RankingScore(rep, t) ≤ τ 2
5 C.append(t);
6 End If
7 End For
8 End If
9 If size(U) > 0 and size(S) == 0 // Only U contains tuples
10 rep = U [0];
11 Crep = U ; // Use U as the cluster Crep directly
12 End If
13 Return [rep, Crep];

4 EXPERIMENTAL RESULTS
The experiments in this paper are conducted by using Microsoft Vi-
sual Studio Code (version 1.56.2) with an Arch Linux (kernel 15.12.5)
operating system on a computer with a CPU of i7-9700F@4.7GHz,
and 32 GB Memory.

4.1 Datasets
Datasets in this paper are created by the open source data clean-
ing tool Febrl (Freely Extensible Biomedical Record Linkage) [16],
and the relation generated by Febrl is R(tid, GivenName, Surname,
StreetNumber, Address, Suburb, Postcode, State, DateOfBirth, Age,
PhoneNumber, SocSecId), i.e., R(tid, A1, A2, A3, A4, A5, A6, A7, A8,
A9, Aa, Ab) for short. Febrl dirty R by adding t’ ∼ t ∈ R to R,
where t’ may be the same as t ∈ R, or it may contain errors such
as misspellings, or NULL in its attributes, or t may exchange two
attribute values. Before using Febrl to generate datasets, we change
the generate.py file such that: (1) generate.py can insert the same
tuples t’ = t into R; (2) delete attribute Address2 in generate.py and
add the profiles of Address2 to attribute Address.

All our experiments contain three groups experiments {S, K ,
H }. Group S has three experiments {S1, S2, S3} with two vertical
fragmentations of the same schema, i.e., (tid, A1, A2, A8, A9, Aa, Ab)
▷◁ (tid, A3, A4, A5, A6, A7); however, the sizes and dirty situations
of S1, S2 and S3 are different. Each tuple in S1 and S3 contains
up to 10 duplicate tuples but S2 is 15. Moreover, S1, S2 contain
500,000 tuples with 250,000 distinct origin tuples, 200,000 the same
(unmodified) duplicate tuples and 50,000 modified duplicate tuples
with misspellings or NULL values. S3 contains 1,000,000 tuples with
500,000 distinct origin tuples, 400,000 unmodified duplicate tuples
and 100,000 modified duplicate tuples.

Group K and group H respectively consist of two sets of experi-
ments {K1, K2} and {H1, H2}, where K1 and K2 have three vertical
fragmentations of the same schema (tid, A1, A2, Ab) ▷◁ (tid, A3, A4,
A5, A6, A7) ▷◁ (tid, A8, A9, Aa), while H1 and H2 have five vertical
fragmentations of the same schema (tid, A1, A2) ▷◁ (tid, A3, A4) ▷◁
(tid, A8, Aa) ▷◁ (tid, A5, A6, A7) ▷◁ (tid, A9, Ab). Both K1 and H1
contain 500,000 tuples with 250,000 distinct origin tuples, 200,000

unmodified duplicate tuples and 50,000 modified duplicate tuples,
while both K2 and H2 contain 1,000,000 tuples with 500,000 dis-
tinct origin tuples, 400,000 unmodified duplicate tuples and 100,000
modified duplicate tuples.

The order of B+-trees will be m = 400, and thresholds of ranking
function τ 1 = 5 and τ 2 = 105, based on training and statistics in
our experiments. In order to overcome the problem of too many
duplicate values in the same attribute generated by Febrl, some at-
tributes selected from a relation are connected in pairs to construct
a B+-tree, and the maximum number of B+-trees for all vertical
fragmentations is 2. For the relation K1 with the schema R1(tid, A1,
A2, Ab) ▷◁ R2(tid, A3, A4, A5, A6, A7) ▷◁ R3(tid, A8, A9, Aa), as an
example, we create 6 B+-trees: tr11 by the concatenation (A1Ab) of
{A1, A2}, tr12 by (A2Ab) for R1; tr21 by (A4A5), tr22 by (A4A6) for
R2; tr31 by (A8Aa), tr32 by (A9Aa) for R3.

4.2 Effectiveness and Efficiency
We use precision (%) and recall (%) to evaluate the effectiveness, and
use average resolving time (millisecond, ms) to the efficiency of our
approach.

For each query tuple t = (tid, tw1, tw2, · · ·, twm) ∈ R where R
∈ {S1, S2, S3, K1, K2, H1, H2}, we resolve t over {R1, R2, · · ·, Rv},
and then obtain clusters {C1, C2, · · ·, Ck}. Let tuples in Ti ⊂ Ci refer
to the real-world entity e described by Ci, and Ni is the set of all
tuples in R describing the real-world entity e. We use the sizes |Ci|,
|Ti| and |Ni| of Ci, Ti and Ni (1 ≤ i ≤ k) to define precision and recall
below:

Precision =

(k∑
i=1

(
|Ti |

|Ci |

))
/k (5)

Recall =

(k∑
i=1

(
|Ti |

|Ni |

))
/k (6)

Table 1 shows the precision, recall and average resolving time over
each dataset, where “#v-f” means the size |{R1, R2, · · ·, Rv}|, i.e., “the
number of vertical fragmentations”. Precisions are between 99.89%
and 100%, and the recalls are between 96.76% and 99.05% for all
datasets. The average time for resolving all tuples in each dataset
is from 0.17ms to 0.32ms.

We do not merge the tuples in C to obtain the “optimum” tuple,
but only use the representative rep of a cluster C to compute the
RankingScore(rep, t) for t (∈ R1 ▷◁ R2 ▷◁ · · · ▷◁ Rv), which may
impact on the recalls. Datasets H1 and H2 have 5 vertical fragmen-
tations with more fragmentations to get more candidates, which
lead to higher recalls.

The forest index can obtain a small number of candidate tuples,
and the complexity of our ranking function is low; thus, the average
resolving time is much smaller than 1ms. The resolving times for
{H1, H2} are more than that of {S1, S2, S3, K1, K2}, since H2 has
more candidate tuples.

4.3 Comparison with Existing Methods
For real-time ER, Ramadan et al. proposed methods in [9] based
on forest index by using AVL-trees with different attributes of a
single table, which use an adaptive window or a fixed window to
select all the tuples in the window as candidates. In [9], the dataset
OZ (Firstname, Surname, Suburb, Postcode) contains 345,876 tuples,

Real-Time Entity Resolution by Forest-Based Indexing in Database Systems with Vertical Fragmentations CSAE 2021, October 19–21, 2021, Sanya, China

Table 1: Precision, Recall and Average Time

S1 S2 S3 K1 K2 H1 H2

v-f 2 2 2 3 3 5 5
Precision 100 100 100 99.98 99.97 99.92 99.89
Recall 96.98 96.76 96.96 98.38 98.41 99.05 99.01
Time 0.17 0.21 0.17 0.20 0.21 0.26 0.32

which is modified by adding duplicate records that had randomly
corrupted attribute values based on misspellings, or NULL etc., the
average resolving time over OZ-1 (1 corrupted attribute) is from
0.7ms to 1.3ms, and the recall is between 62% and 92% (1, 2 and 3
trees, concatenation of 2 attributes).

According to the semantics of individual attribute in a single
table, Zhu et al. presented an approach of real-time ER based on
multiple indices with hash-index and tree-index in [17]. For the NC
(FirstName, Surname, Postcode, PhoneNumber) dataset generated
from a real voter registration dataset with 1,000,840 tuples, The
average resolving time over NC is 1.2ms, and the precision is 99.75%,
recall is 98.92%.

For relations with vertical fragmentations, therefore, our method
proposed in this paper is highly competitive with some existing
methods although different experimental environments are in-
volved. The high precision and recall with a small average resolving
time obtained by our approach are derived from our forest index
and ranking function.

5 CONCLUSIONS
By creating forest-based indexing, ranking functions and corre-
sponding algorithms, in this paper, we proposed an approach to
resolve query tuples over dirty relations of a set of vertical frag-
mentations with duplicates, misspellings, or NULL values of text
attributes. Over seven datasets of various vertical fragmentations
with the number of tuples between 500,000 and 1,000,000, by our
approach, the average elapsed time of ER ranges between 0.17ms
and 0.32ms, the precisions are between 99.89% and 100%, and recalls
are from 96.76% to 99.05%. For future work, we plan to optimize
the forest index by selecting attributes for B+-trees, and improve
the accuracy of the ranking function.

ACKNOWLEDGMENTS
This work was supported partly by the Natural Science Foundation
of Hebei Province of China (F2017201208).

REFERENCES
[1] P Vieira, A C Salgado and B F Lóscio (2016). A Dynamic Indexing for Incremen-

tal Entity Resolution over Query Results. International Journal of Linguistics
Research, 7(3), 92-103.

[2] V Christophides, V Efthymiou, T Palpanas, G Papadakis and K Stefanidis (2020).
An overview of end-to-end entity resolution for big data. ACM Computing
Surveys (CSUR), 53(6), 1-42.

[3] A K Elmagarmid, P G Ipeirotis and V S Verykios (2007). Duplicate record detection:
A survey. IEEE Transactions on knowledge and data engineering, 19(1), 1-16.

[4] D Burdick, R Fagin, P G Kolaitis, L Popa and W C Tan (2016). A declarative
framework for linking entities. ACM Transactions on Database Systems (TODS),
41(3), 1-38.

[5] D Firmani, B Saha and D Srivastava (2016). Online entity resolution using an
oracle. Proceedings of the VLDB Endowment, 9(5), 384-395.

[6] H Z Liang, Y ZWang, P Christen and R Gayler (2014). Noise-tolerant approximate
blocking for dynamic real-time entity resolution. Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), 449-460.

[7] G Papadakis, D Skoutas, E Thanos and T Palpanas (2020). Blocking and filtering
techniques for entity resolution: A survey. ACM Computing Surveys (CSUR),
53(2), 1-42.

[8] X L Dong and D Srivastava (2013). Big data integration. 2013 IEEE 29th interna-
tional conference on data engineering (ICDE), 1245-1248.

[9] B Ramadan and P Christen (2014). Forest-based dynamic sorted neighborhood
indexing for real-time entity resolution. Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and Knowledge Management
(CIKM), 1787-1790.

[10] P Christen (2012). Data matching, Concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer-Verlag, Berlin, Heidelberg.

[11] T Ranbaduge, D Vatsalan and P Christen (2018). A scalable and efficient subgroup
blocking scheme for multidatabase record linkage. Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), 15-27.

[12] V Christen, P Christen, and E Rahm (2019). Informativeness-Based Active Learn-
ing for Entity Resolution. Machine Learning and Knowledge Discovery in
Databases, 2, 125-141.

[13] D Vandic, F Frasincar, U Kaymak andM Riezebos (2020). Scalable entity resolution
for Web product descriptions. Information Fusion, 53, 103-111.

[14] M T Özsu and P Valduriez (1999). Principles of distributed database systems.
Springer, Cham, Switzerland.

[15] R Wang, E M Pierce, S Madnick and R C Fisher. Information Quality. Routledge,
New York, USA.

[16] P Christen (2008). Febrl - an open source data cleaning, deduplication and record
linkage system with a graphical user interface. Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining,
1065-1068.

[17] L Zhu, R D Cui, Q Ma and W Y Meng (2019). Real-time Entity Resolution by
Multiple Indices. 2019 14th International Conference on Computer Science &
Education (ICCSE), 1063-1068.

	Abstract
	1 INTRODUCTION
	2 PROBLEM DEFINITION
	3 INDEX AND ALGORITHMS
	3.1 Creation of Index
	3.2 Ranking Function
	3.3 Entity Resolution

	4 EXPERIMENTAL RESULTS
	4.1 Datasets
	4.2 Effectiveness and Efficiency
	4.3 Comparison with Existing Methods

	5 CONCLUSIONS
	Acknowledgments
	References

