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ABSTRACT
Computational fluid dynamic simulations with moving boundaries
are widely involved in high performance computing applications.
For problems with large-displacement or large-deformation bound-
aries, mesh cells near the boundaries are often excessively stretched
or compressed, thus it’s hard to maintain a high-quality mesh. To
deal with the distorted cells, this paper adopts the mesh refinement
method based on the open source software OpenFOAM. In order
to achieve the desired effects of localization and adaptation, we
propose an adaptive length scale estimation algorithm based on
the specified growth factor and current edge lengths. Consider-
ing the inconsistency problems for the original implementation of
parallelization, an optimized multi-threaded master/worker model
is developed for the process of edge checking. Experiments show
that our adaptive length scale estimation algorithm works well for
moving boundary problems. Compared to the original mesh defor-
mation, using the adaptive mesh refinement could greatly improve
the mesh quality. In parallel testing, all the results are consistent
and a maximum speedup of 3.8 is achieved on a computing node of
24 cores.
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1 INTRODUCTION
Simulation of Computational Fluid Dynamics (CFD) with moving
boundary is widely involved in high performance computing ap-
plications, such as aerospace engineering and ocean engineering
[1-3]. Mesh deformation is an effective method to address moving-
boundary problems. To deal with different moving conditions, re-
searchers have developed a lot of mesh deformation methods [4-7].

The unified point of all the mesh deformation methods is to
calculate the mesh motion by a specific algorithm while keeping
the mesh topology unchanged. However, for problems with large-
displacement or large-deformation boundaries, deformation meth-
ods could hardly maintain high-quality meshes. Because the topol-
ogy could not be modified, mesh cells near the boundaries will be
excessively stretched or compressed. Adaptive mesh reconnection
is often used in situations where cells have become excessively
distorted. One approach is to re-mesh the whole domain using the
mesh regeneration algorithm. But this method produces too much
time cost and introduces excessive interpolation errors. Therefore,
a more applicable approach is the local re-meshing with less time
consuming and interpolation errors [8].

The topic of local re-meshing could be extended to include re-
finement and de-refinement of cells. The key idea is to increase
the points at regions which require higher mesh density to resolve
high solution gradients and decrease the mesh density where the
solution error is low [9-11]. Edge bisection and edge contraction
are two opposite operations that could refine and coarsen the mesh
resolution. These operations could be used together to modify the
mesh topology and improve the mesh quality [8] [12].

OpenFOAM is the most widely used open-source software in
CFD [13] [14]. This paper adopts the local refinement method imple-
mented in the 4th extended version of OpenFOAM [15]. However, in
our practical cases with moving boundaries, several technological
problems have arisen for the original implementation.

Firstly, the original algorithm needs to specify a fixed-value
length scale at the boundary. However, for a new-generated initial
mesh, we often do not know the exact lengths for the boundary
cells. In addition, the lengths of the boundary cells may not keep
the same, so it’s not reasonable to define a specific value for all the
cells on the boundary. Secondly, only one specified growth factor is
utilized to calculate the length scale of the internal mesh. This will
lead to an incongruous change of the mesh resolution. The length
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scale should be calculated according to the initial mesh. Thirdly,
the thread parallelization of the original implementation has a
inconsistency problem. Under the same configuration condition,
the results of multiple runs are different.

To address the above problems, this paper proposes an adaptive
length scale estimation algorithm based on the specified growth
factor and current edge lengths. Considering the inconsistency prob-
lems for the original implementation, an optimized multi-threaded
master/worker model is developed for the parallelization of edge
checking. The parallelization is thread based so it is shared memory
parallelization and not scalable on distributed servers. The concrete
content is organized as follows. Section 2 introduces the basic oper-
ations for the mesh refinement. Section 3 elaborates the details for
the adaptive length scale estimation. The optimized thread paral-
lelization is involved in Section 4. The experiments and conclusions
are respectively contained in Section 5 and 6.

2 MESH REFINEMENT BASIS
2.1 Edge Bisection and Contraction
For numerical simulation with moving boundary, the flow field in
the computational area sometimes changes dramatically due to the
movement of the boundary. If using a sparse uniform mesh, it is
hard to ensure the calculation accuracy in these regions, thus the
details of the fluid will not be captured. If a dense uniform mesh is
used, large amounts of computation will be produced. Therefore,
we can use non-uniform mesh to address this problem: using sparse
mesh in the areas of laminar flow and using dense mesh in the areas
with large-gradient changed flow. For steady flows, we can refine
the initial static mesh locally according to experience, while for
unsteady flowswithmoving boundaries, it is necessary to refine and
coarsen the mesh during the running time according to the changes
of flow field. In this paper, edge bisection and edge contraction are
used to adjust the density of the mesh.

Edge bisection splits an edge at the midpoint [16]. Then all the
edges connected to the original edge will be separated and new
edges and cells will be generated. Figure 1 shows the operation
of edge bisection. As we can see, A-B is an edge shared by two
triangular cells. Due to its length is relatively large, a new point
C is generated at the midpoint and then is connected to the other
two points. Thus, the two mesh cells sharing A-B are bisected into
four new cells.

Edge contraction is the inverse operation of edge bisection [17].
It firstly removes one endpoint of an edge from the mesh, and
then deletes all the edges that connected with this endpoint. The
remaining point that originally connected with this endpoint is
then reconnected to the other endpoint. In Figure 1, edge C-D is
relatively too short in cell A-C-D and cell B-C-D. So, point D is
deleted and C-D is compressed into point C.

2.2 Checking by Length Scale
In the process of mesh density adjustment, it should be firstly
figured out which regions need to be refined or coarsened. We need
to check the length of each edge to perform a proper operation
on it. This could be regarded as a classification problem and we
can divide the mesh edges into three types: subset that needs to be
bisected, subset that needs to be contracted, and subset that doesn’t

Figure 1: Edge Bisection and Contraction for Mesh Density
Adjustment.

need to be adjusted. In this paper, we classify the mesh edges based
on the length scales.

According to Menon [15], length scale L(x) is defined as the
size range of cell x . For an edge e shared by cells owner [e] and
neiдhbor [e], the classification could be accomplished as follows:

e ∈


SubsetBisct ,Lenдth(e) > F (e) ×Max
SubsetCtrct ,Lenдth(e) < F (e) ×Min
SubsetNon , F (e) ×Min ≤ Lenдth(e) ≤ F (e) ×Max

(1)

where F (e) =
L(owner [e])+L(neiдhbor [e])

2 , which represents the
standard length scale for edge e .Max andMin are predefined fac-
tors for the scaling ratio. Different configuration values lead to
different mesh qualities and they are specified to 1.4 and 0.7 for
the case of moving fish in this paper. Only edge lengths within the
length scale qualified by L(e), the topology will not be modified.
Otherwise, the edges will be bisected or contracted.

3 ADAPTIVE LENGTH SCALE ESTIMATION
This paper estimates the length scale based on a greedy method pro-
posed byMenon [18]. The method takes the specified length scale of
boundary cell as the basis and increases/decreases the length scales
of internal cells according to a specified growth factor. However, in
actual simulations, the initial static meshes are generated by users
according to the practical physical conditions. It is hard to manually
specify the boundary scale and growth factor to be consistent with
the mesh. The initial distribution of the mesh density is commonly
the most direct response to the user’s intention and is often com-
plex. So, another problem is that for an initial mesh generated with
a non-uniform density distribution, if the length scale is estimated
only by a predefined growth factor, the resolution of the mesh will
change in a way vastly different from the distribution of the initial
mesh.

Since the initial static mesh directly represents the physical
characteristics, if the mesh density distribution is consistent with
the initial state all along during the boundary motion, an ideal
simulation condition will be achieved. Considering this, we add a
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Figure 2: Level Distribution of the Initial Mesh.

third item to Menon’s conclusion, thus a reasonable length scale
should have following three properties:

• For mesh cells on the moving boundary x ∈ δΩ, L(x) should
be small enough to capture the curvature details with suffi-
cient accuracy.

• For mesh cells defined in the inner domain, L(x) should grow
from δΩ to the interior according to a certain gradient, so as
to reduce the computational cost of the solution.

• For all mesh cells in the solution domain x ∈ Ω, L(x) should
be consistent with the initial mesh’s length distribution, so
as to avoid excessive changes.

In order to meet the above requirements, we develop an adaptive
length scale estimation algorithm based on the specified growth
factor and current edge lengths, as shown in Algorithm 1. Firstly,
all the mesh cells are traversed in step 1-5, and the average side
lengths are calculated and assigned to L(x). Because the length
scales are initialized based on the side lengths of the initial mesh
cells, this assures the values of the length scales have obtained the
initial information and could maintain the same distribution as the
initial mesh.

In step 6-32, the length scales are further modified by the speci-
fied growth factor based on the idea of hierarchical advancing. Here
hierarchical advancing means that we take the moving boundary as
the center and divide the mesh cells into different levels. As shown
in Figure 2, the closer the cell is to the center, the lower its level
is. Then, from low-level cells to high-level cells, the length scales
are increased according to the specified growth factor α so as to
meet the above properties. Specifically, we firstly initialize the cells’
levels to 0 at step 4, and then set the levels of moving boundary
cells to 1 in step 6-11. For mesh cells at level 1, their length scales
remain static during the whole simulation, which ensures the scales
near the moving boundary could be consistent with the initial state.
In step 12-32, we use thewhile loop to advance the mesh hierarchy
computation. For the current visiting level curLevel , we firstly find
all the neighbors of each cell x in curLevelCells . For each neighbor
y of cell x , if its level is 0, which means it has never been visited,
then we set its level to current-visiting-level plus 1. Then we calcu-
late the average length scale avдScale ofy’s neighbors whose levels
are lower than it. If the current length scale L(y) is greater than

avдScale × α or less than avдScale ÷ α , which means the chang-
ing gradient of current length scale is greater than the predefined
growth factor α ,

L(y)shouldberesettothesevalues .Thencell

is added to the stack of next visiting level. After traversing all the
cells of current visiting level, the next level will be pushed forward.
The process is ended when all the mesh cells have been accessed.
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Figure 3: Master/Worker Threading Model.

The key point of Algorithm 1 is that the length scale could be
adjusted according to the current lengths of cell edges at running
time and is also refined by a reasonable growth factor in case of
too large changing gradient. Based on a lot of experiments, we find
that a reasonable growth factor should be set to around 1.1. Applied
with our algorithm, the mesh edges could be adaptively bisected
and contracted, and the mesh topology could always keep the same
scale distribution as the initial static mesh.

4 CONSISTENT THREAD PARALLELIZATION
4.1 Master/Worker Threading Model
In OpenFOAM-Extend 4.0, the above mesh refinement is accom-
plished based on a master/worker threading model. To address
the locking problem for thread parallelization, the model is imple-
mented by a coarse-grained locking mechanism, which performs
the checking in parallel but sequentially performs each operation.

As shown in Figure 3, according to the number of threads, the
mesh edges are equally divided into n stacks. Each worker thread
possesses a unique stack. In the process of the checking, each thread
traverses its own stack and judges whether the edges need to be
modified. Detailed implementation of the edge checking could refer
to [12]. If an edge is checked to be bisected or contracted, it will
be pushed into the shared master stack. All the stack operation
push and pop are protected by the locking mechanism. After all the
worker threads have finished the checking, a synchronization will
be performed to kill the worker threads. At last, the master thread
bisects or contracts all the edges in the master stack, and the mesh
refinement at this time step is then finished.

4.2 Inconsistency Problem and Optimization
Consistency is a basic property for actual simulations. Under a
certain configuration without randomness, any simulation results
should be the same and could be replicable. However, in the ex-
periments we find the above parallel model has a inconsistency

Figure 4: Optimized Threading Model.

problem, which leads to different refinement results under a certain
condition.

In the threading model, all the worker threads are sharing a
unique master stack. Because the master stack is protected by the
locking mechanism, only one thread could access the stack at a
time and the other threads have to waiting until the push operation
is finished. When the master stack is released, the current waiting
threads will access it in an uncertain sequence scheduled by the
operating system. Thus, it will result in an uncertain stack for the
master thread to handle. Although the mesh edges are initialized
into n certain and isometric arrays, the generated master stack is in
a changeable order, which then leads to the inconsistency problem.

From the above analysis, we could find the key point is the
changeable and uncertain order of the edges in the master stack. If
we could generate a certain array for the master thread to handle,
the results will be unchangeable. Based on this, we attach a unique
index for each edge and make them as a coupled set:

{Edдe, Index} .

The index for each edge is defined according to the mesh levels.
Smaller level corresponds to smaller index. Then the coupled sets
are treated as the operating object. As shown in Figure 4, different
from the original model, all the stacks store the sets instead of
the edges. Although the master stack is still uncertain, we could
rearrange the edges according to their indexes and then generate
an ordered edge array. This ordered array is unique without the
influence of multiple threads. Thus, the mesh refinement results
could be consistent in parallel.

4.3 Reconnection Strategy
In the optimized threading model, when the master thread gets the
ordered edge array and starts to reconnect the checked edges, a
problem arises that whether bisection or contraction should be per-
formed at first step. In this paper, we conclude three reconnection
strategies, as shown in Figure 5

To classify whether the edges are checked to be bisected or con-
tracted, we construct two ordered arrays ‘arrayB’ and ‘arrayC’ from
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Figure 5: Reconnection Strategies.

Figure 6: Mesh Deformation without Topology Refinement.

the master stack. The strategy ‘B-C’ indicates that bisections are
firstly performed and then contractions are followed. For ‘B-C’, ‘ar-
rayB’ is firstly traversed and ‘arrayC’ is followed. While for strategy
‘C-B’, bisections are performed after all the contractions have fin-
ished. So, ‘arrayC’ is firstly traversed and ‘arrayB’ is followed. For
strategy ‘Mix’, all the checked edges are stored in a single ordered
array, and bisections and contractions are performed alternately
in a certain order. Here checks are performed again to classify the
operation type for each edge. It should be noted that, because the
front operations(either bisection or contraction) could influence
the necessity of the latter operations, checks are also performed in
strategy ‘B-C’ and ‘C-B’.

5 EXPERIMENT AND DISCUSSION
5.1 Experiments Setup
In this paper, we conduct experiments in a computing cluster with
two Intel Xeon Gold 5118 12-cores CPU for each node. Paralleliza-
tion between multiple nodes is not considered in this work. So, all
the test cases are simulated within one node.

The benchmark is a two-dimensional fishwith length of L located
in the center of a rectangle with mesh of 10339 cells, as shown in

Table 1: Mesh Quality Information at Different Time Steps

Figure 2. The governing equation of the fish motion is from Carling
[19] as following:

y (s, t) = 0.125
s + 0.03125

1.03125
sin

[
2π

(
s −

t

T

)]
(2)

where y is the displacement of mid-line profile, s is the arc length
along the mid-line of the fish, t is the current time and T is the
undulating period. The fish is moving ahead at a speed of 0.5L/T .

5.2 Effectiveness of Adaptive Refinement
We firstly test the mesh motion without topology refinement. The
result at t=6.8T is illustrated in Figure 6. We could see the topology
of the whole mesh remains unchanged and only the locations of
the points are modified. From the detailed view around the fish
body, it can be seen many cells have been excessively stretched or
compressed. Commonly these low-quality cells could not support
the numerical simulation any more. Thus, local mesh refinement is
required.

Themesh refinement result with adaptive length scale estimation
is shown in Figure 7. For all the tests, the growth factor is specified
to 1.1 and the reconnection strategy is set to ‘Mix’. Four specific
time steps are exhibited to show different morphologies of the fish
motion. Different color represents different generated time for each
cell. The time is reduced from red to blue and the dark red regions
are the newly generated cells. We could see as the fish approaches
to the left, the cells in front of the fish body will be refined and
the cells behind the tail will be coarsened according to the growth
factor. Thanks to the adaptive length scale estimation, during the
whole process the mesh around the fish body has always kept in a
same resolution as the initial state.

Table 1 shows the mesh quality information at these time steps.
The quality metric is a scalar value which is normalized to vary in
the range between 0 and 1, where a quality of 0 denotes a degenerate
cell with zero volume, and 1 denotes a cell that is close to ideal.
Specific formula can refer to [12]. In the table, we could see although
the lowest quality and the average quality are reduced compared
to the initial time, the variations are relatively small within an
acceptable range. The number of cells also remains stable, which
guarantees a consistent mesh scale as the initial state.

As a comparison to Figure 6, a detailed view around the fish
body at t=6.8T is illustrated in Figure 8. We could see there is no
excessively stretched or compressed cell formed. Especially for
the regions beside the tail, all the cells have kept in reasonable
triangular shapes.
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Figure 7: Mesh Refinement with Adaptive Length Scale Esti-
mation at Different Time Steps (t=2.2T, 4.5T, 6.8T, 8T ).

Figure 8: Detailed View around the Fish Body at t=6.8T.

5.3 Effectiveness of Consistent Parallelization
To give a visual display of the inconsistency problem, Figure 9 shows
the variation of the cell number using the original algorithm. The
black solid line is the result of serial running. It has shown a growing
trend as the time proceeds, which means the mesh resolution is
changing too much from the initial state. The dashed lines are
four parallel results running with 4 cores. We could see they are
definitely different from each other, although the configurations are
unchanged. As a comparison, the test using the consistent algorithm

Figure 9: Variation of the Cell Number Using the Original
and Consistent Algorithms.

Figure 10: Variation of the Average Quality Using the Three
Different Connection Strategies.

is also plotted in red solid line. The results are constant in both
parallel and serial and the variation is much more stable than the
non-consistent results.

Figure 10 shows the variation of the average quality using three
different connection strategies. We could see there is not much
difference between the three strategies in our test case. However,
this does not mean the reconnection strategy has little impact on
the mesh refinement. For large-scale cases with more bisections
and contractions, the difference may be much more distinct.

The parallel speedup of the edge checking process is illustrated
in Figure 11. At first, the speedup is increased with the growth
of parallelism. Because the computing node has 24 physical cores,
when the degree of parallelism reaches to 24, the parallel speedup
starts to drop down. The maximum speedup is obtained at n=22
and is approximated to 3.8. This is because the node we used is
also responsible for other system calls, so we could not occupy all
the cores for computing. The parallel efficiency is restricted by the
locking mechanism of the stack operations. Threads are frequently
waiting for the access of the master stack.
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Figure 11: Parallel Speedup of the Edge Checking Versus De-
gree of Parallelism.

6 CONCLUSION
This paper proposes an adaptive length scale estimation for the
local mesh refinement. It has been tested to be effective for the
moving boundary problems. A consistent model is developed for
the master/worker threading parallelization in the process of edge
checking. The results show that no inconsistency problem exists
in the optimized implementation. Some future work is on the way,
such as more efficient locking mechanism, distributed paralleliza-
tion, three-dimensional application, and so on.
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